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CHAPTER 1. INTRODUCTION 

I 
General Remarks 

There have been rising costs in recent years in the building and 

general construction Industries. This is due to increased wages and 

material costs which have prompted the increased use of cold-formed steel 

members as load carrying structural components. One method for cutting 

costs in labor and materials in multi-story buildings and bridges is by 

use of cold-rolled steel decking in the concrete floor systems. The cost 

of conventional construction methods which consist of separate forming 

operations for installing and removing wooden or steel forms can comprise 

35 to 60 percent of the total cost-in-place concreting operation (18). 

Elimination of this forming operation can be accomplished by using corru­

gated cold-formed steel decking as a form which remains as a permanent 

integral part of the floor slab. 

A steel deck which has some type of device in the form of rolled 

embossments, transverse wires, holes, etc., to provide positive interac­

tion between the concrete and the steel can serve as reinforcing for the 

floor slab. This is usually termed "composite steel-deck reinforced con­

crete slab construction." This Investigation deals with the behavior and 

analysis of two-way simply-supported concrete composite floor slabs con­

structed with cold-formed steel decking. 

Two typical building floor constructions utilizing cold-formed steel 

decking are shown in Figures 1 and 2, Both constructions utilize com­

posite decking with concrete topping for the structural load-carrying 

element. However, other items are oftentimes included such as 
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Figure 1. Typical building floor construction 
utilizing cold-formed steel decking 

electrification ducts as shown in Figure 2, or suspended ceilings as 

shown in Figure 1. 

The more important advantages of using cold-formed steel decking as 

reinforcement for a floor slab system can be summarized by the following 

statements. 

1) The steel deck eliminates the need for installing formwork other 

than minor division of slab section formwork. 

2) The deck eliminates the need for removal of all but minor form-

work. 

3) The composite deck serves as reinforcing for floor slab and only 

additional shrinkage, temperature, and negative moment reinforce­

ment is needed where desired. 
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Figure 2. Typical building floor construction utilizing cold-formed steel decking 
with composite support beams 
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4) The deck provides a ceiling surface, or in the case of a suspended 

ceiling, provides easy attachment of support hangers. 

5) The deck can be easily placed and handled. 

6) The corrugations of the deck contain pre-engineered ducting for 

electrification, communication, and air distribution. 

7) The deck is palletized floor-by-floor for easy shipment and han­

dling and reduces requirements for storage spaces. 

8) After placement of the deck panels, the deck surface acts as a 

safe platform for the workmen, their tools, materials and equip­

ment. 

9) The likelihood of construction fires is greatly reduced since 

most combustible wooden formwork is removed. 

10) Time of construction is greatly reduced since casting of addi­

tional floors may proceed without having to wait for previously 

cast floors to gain strength to support shoring. 

11) The use of steel decking reduces the dead load of the floor slab 

with little or no corresponding loss in load-carrying capacity. 

The floor is quite often made to act composltely with the steel sup­

port beams by attaching protruding studs welded through the decking to the 

support beams. See Figure 2. This investigation included the behavior 

and analysis of only the composite floor slab constructed with the steel 

decking and did not Include the aspects of the composite action of the 

support beams. All reaction conditions in this investigation consisted of 

simple Guppcrts. Cthar Irivestigaciôris by Fisher (12), Sluccer (45), Robin­

son (37), (38) and others (13), (22), (44), however, have dealt with the 

composite support beams and slab systems where composite action is insured 
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by use of welded studs. 

The steel deck achieves most of Its composite floor integral action 

by various shear transferring devices. These devices consist of rolled 

embossments in various plate elements of the decking, transverse wires 

(T-wires) spot-welded to the top of the corrugations, or holes to allow 

the concrete to fill the corrugations. In some instances vertical inter­

locking is provided by the geometry of the deck itself. This investigation 

utilized deck from only three manufacturers. The deck used has only em­

bossments or transverse wires (T-wires) as shear transferring devices to 

provide the structural composite interaction. 

Object 

The primary object of this investigation was to investigate the be­

havioral characteristics and to analyze full-scale two-way simply supported 

floor slabs constructed with corrugated cold-formed steel decking which 

were subjected to concentrated loads. This primary objective was divided 

into three phases as follows: 

1) loading to ultimate failure of full-scale two-way floor slabs 

reinforced with cold-formed steel decking, 

2) compilation of test data to indicate behavioral characteristics, 

and 

3) development of a theoretical approach based upon strength design 

concepts. 

In order to carry out the investigation on slabs, cl°b 

element properties, behavioral characteristics, and analyses were needed. 

These one-way characteristics were obtained by experimental testing to 
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failure of one-way slab element or beam type specimens, and by appropriate 

ultimate strength principles of beam analysis including a shear-bond re­

gression analysis for predicting the ultimate load. 

The overall intent of this investigation was to provide information 

to steel deck manufacturers as to possible design criteria for two-way 

simply supported floor slabs based upon ultimate strength concepts. The 

effect of concentrated loads due to fork-lift trucks and the transverse 

distribution of concentrated forces was of primary concern in carrying 

out the objective of this investigation. 

Scope 

The laboratory testing consisted of full-scale two-way floor slabs 

and full-scale one-way slab elements or beams. Full-scale tests were 

utilized in that model tests Involving the scale modeling of the various 

shear transferring devices on the light gage decking was thought to be 

almost an impossibility. 

Five full-scale two-way simply supported slabs reinforced with three 

different cold-formed steel decks were constructed and tested to ultimate 

failure. These full-scale slabs were all 16 feet long by 12 feet wide by 

4% to 5% Inches nominal thickness. All slabs were subjected to the same 

loading which consisted of four concentrated load points symmetrically 

centered in a four-foot square in the center of the slab. The four concen­

trated loads were chosen to approximate the effect of a fork-lift truck, 

end tc ascertain the lead distributions eneouriucicu witu «iùùcentrâced loads 

on steel-deck-reinforced floor slabs. Figure 3 shows the position of the 

load points, the dimensional layout, the types of support reactions, and 
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Figure 3. General layout of full-scale slab tests 

the orientation of the steel decking used for the five slab tests. 

Specimen behavior for the five two-way slabs was observed as evidenced 

by the following items: 

1) crack pattern development and crack width measurements, 

2) end slip (horizontal slip between steel deck and concrete) data 
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along the two opposite edges perpendicular to the corrugations, 

3) vertical deflections of the slab at several points, 

4) bending.strains at several points on the concrete and steel 

surfaces, 

5) vertical reactions as measured by transducers along portions of 

two edges of the slabs, 

6) the ultimate applied load of each slab as measured at the four 

concentrated load points, and 

7) the type of failure at ultimate load. 

The first slab had all four corners anchored with Instrumented corner 

restraints to measure vertical uplift reactions at the corners. The other 

four slabs had no corner restraints, leaving the corners free tv> displace 

upward. The upward corner movement was measured by vertical deflection 

dials. All slabs except the first were cyclic loaded between zero and 

approximately 60 percent of ultimate ten times to give behavioral data 

relating to low-cycle repeated loading. 

Along with the five full-scale slab tests, 51 full-scale, one-way 

slab element specimens were constructed and tested. The slab element 

specimens were reinforced with the same three types of steel decking as em­

ployed in the two-way slabs. These tests consisted of one panel width or 

strip of a steel deck reinforced slab element with a width of two or three 

feet, a length of 6 to 12 feet and a nominal depth of 4% to 5% Inches. 

Their purpose was to determine the one-way strength properties and charac­

teristics to be utilized in comparison to the two-way slab tests. Twelve 

of the 51 slab element specimens had the steel deck corrugations trans­

verse to the beam length, whereas 39 specimens had the deck corrugations 
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parallel to the length. 

Summary of Research on Composite Deck 

at Iowa State University 

An extensive theoretical and experimental investigation on various 

aspects of cold-formed steel decking as reinforcement for concrete floor 

slabs was initiated at Iowa State University in 1967 under the sponsorship 

of the American Iron and Steel Institute (AISI). Direct guidance from the 

AISI was provided by the Task Group on Composite Construction under chair­

manship of Mr. A. J. Oudheusden. The major portion of the research has 

involved experimental testing to ultimate. To date 341 specimens of 

various types have been tested at Iowa State University. A brief descrip­

tion of each study and the number of tests for each is shown in Table 1. 

A total of 18 unpublished reports, four published papers, and one 

oral presentation have resulted from the research at Iowa State University. 

The unpublished papers are listed as References (9), (7), (11), (10), (23), 

(24), (26)-(29), (32)-(36), and (40)-(43). The published papers are given 

by References (8), (30), (31), and (39), and the oral presentation is 

given by Reference (25). 
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Table 1, Summary of tests conducted Involving cold-formed 
steel decking as reinforcement for concrete 
floors 

Item 
No. 

Number 
tested Type of specimen̂  tested 

1 178 One-way slab elements (beams) 

2 56 Pushout specimens 

3 14 One-way slab elements subjected to 
repeated loading 

4 12 Slab elements with deck corrugations 
transverse to beam length 

5 5 Slab elements continuous over two or 
three spans 

6 6 Slab elements constructed with variable 
supplementary reinforcement in the form 
of welded wire fabric 

7 31 Slab elements constructed with three-
inch -deep steel deck 

8 34 Slab elements constructed with non-
composite deck with various surface 
coatings 

9 5 Full-size two-way floor slabs simply 
supported on four edges 

Total 341 

Âll specimens were tested simply supported on a single 
span with static concentrated loads with 1%-inch decking 
oriented with corrugations parallel to length unless other­
wise indicated. 
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CHAPTER 2. METHODS OF ANALYSIS AND DESIGN 

General Remarks 

A simple method of analysis and design for steel-deck reinforced 

floor slabs is to consider the system as a one-way floor slab. However, 

design questions arise as to the amount of distribution of forces in the 

so-called "weak" direction transverse to the deck corrugations, particu­

larly for floor slabs subjected to concentrated loading. There is a fur­

ther question as to the amount of reactive force carried by those support 

beams parallel to the deck corrugations. These beams receive those reac­

tive forces from loading which is distributed in the "weak" direction. 

This chapter contains a description of current design procedures, followed 

by a presentation of lour independent methods of analysis. 

Review of Present Design Procedures 

Present design procedures for steel-deck reinforced floor slabs treat 

the system as a one-way conventionally reinforced slab. Thus, such floor 

slabs are designed basically using working stress methods in accordance 

with established practices for design of reinforced concrete floors (1, 3). 

The allowable stresses and the flexural constants for the cold-formed 

steel decking are calculated based on AISI specifications (5). Additional 

recommendations for design are contained in each deck manufacturer's cata­

log. 

One of the first significant publications to discuss the design pro­

cedures for composite steel-deck reinforced floor slabs was that by B. F. 

Friberg in 1954 (14). His publication employs working stress principles 
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of design for the particular steel deck investigated as well as a cost 

evaluation as compared to a conventionally reinforced concrete slab. 

Â complete summary of present design procedures employing working 

stress principles of reinforced concrete construction was given by C. E. 

Ekberg and R. M. Schuster in 1968 (8). 

Various means of analysis were employed in this investigation to 

study the behavioral characteristics and the predicted ultimate strength 

of simply supported steel-deck reinforced floor slabs. The methods of 

analysis include the following; 

1) one-way shear-bond regression, 

2) yield-line theory, 

3) yield-line and shear-bond methods combined, 

4) orthotropic plate theory, and 

5) curve fitting of deflected surfaces. 

Design by One-Way Shear-Bond Regression Analysis 

A one-way slab element with steel deck corrugations parallel to the 

length and with concentrated line loads, such as shown in Figure 4, usually 

fails by what is termed a shear-bond mode of failure. This type of failure 

is characterized by the formation of a diagonal shear crack in the concrete 

at or near one of the load points followed by a loss of bond between the 

steel decking and the concrete. This results in slippage between steel and 

concrete at the end of the slab element. Thus, the concrete and steel deck 

over the shear scan. L'. in Figure 4 no Imnger «et compositely. This is 

termed a shear-bond failure and is the primary mode of failure for most 

steel-deck reinforced slab elements. 
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Figure 4. Typical arrangement for testing one-way slab elements 

If ultimate failure is by shear-bond, then the shear transferring de­

vice (embossments, T-wires, holes, or geometry) would fail to maintain com­

posite action until the full tensile strength of the steel decking could 

be developed. However, a shear-bond failure may be preceded by partial 

yielding of the deck cross section in the high moment region. This depends 

primarily on the strength of the shear transferring device, the percentage 

of steel, the shear span distance L', and the span length L. 

A relationhip has been developed for calculating the ultimate experi­

mental shear capacity of a one-way slab element (40). This is 

where 

f = compressive cylinder strength of concrete, psi 

p = reinforcement ratio, 
d 
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L' = shear span length, inches (assume % of the span length for 

uniformly loaded elements) 

V = ultimate experimental shear capacity, pounds 

kĵ  = slope of regression curve 

kg = intercept of regression curve 

s = center-to-center spacing of a hole or welded shear trans­

ferring device, inches (for cases of embossments where 

shear transferring device is a fixed pattern the value of s 

is unity) 

bj = width of cross section, inches 

d = effective slab depth as measured from extreme concrete ccmi-

presslon fiber to centroidal axis of steel deck, inches 

Agj = cross-sectional area of steel deck per width b̂ , square inches 

The use of Equation (1) requires the determination of two constants, kĵ  and 

kg. These constants are the slope and intercept, respectively, of the re­

gression analysis of the linear relationship between s/(bjdp) and 

(dŷ )/(pL'). The resulting total ultimate shear, V̂ , in pounds for slab 

elements of span length, L, in feet, and dead load, W in pounds per square 

foot is given by 

The shear-bond regression analysis was used in this investigation as a 

means of approximating the ultimate strength of the five two-way slabs used 

in this investigation. The first four slabs utilized steel decking which 

had been evaluated previously by slab element tests to determine regression 

constants kj and k2. Slab 5 utilized steel decking which had not 

ue 

(2) 
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previously been tested,and thus a series of tests on 29 slab elements 

were conducted In order to deteirmlne and kg. 

Yield-Line Method of Analysis 

General remarks 

Steel-deck reinforced floor slabs are designed basically as one-way 

slabs. However, in certain instances, particularly those involving heavy 

concentrated loading, two-way action should be given consideration. The 

yield-line method of analysis provides a means of predicting the two-way 

flexural behavior of slabs. Not only can the yield-line theory be applied 

to simply supported slabs, but it can be applied to floor slabs continuous 

over multiple supports, to floor slabs with interior openings, and to 

floor slabs of irregular shape. 

The yield-line method provides a straight-forward means of estimating 

the expected ultimate load of a steel-deck reinforced slab for those cases 

where the moment capacity is the controlling criteria. For slabs con­

taining heavy concentrated loads, some additional reinforcement such as 

welded wire fabric or heavier may be necessary to prevent the break-up of 

the slab in the neighborhood of each concentrated load and to provide 

nominal temperature and shrinkage reinforcement. 

For cases where the moment capacity of a particular critical section, 

as arrived at through the yield-line method, is not attainable and the 

slab is more critical In shear-bond or deflection, then a combination of 

the yield-line method and the one-way shear-bond or deflection methods can 

be utilized. Most simply supported steel-deck reinforced floor slabs fail 

ultimately by means of shear bond. For such cases involving shear-bond 
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failure, the yield-line crack pattern mechanism can be utilized in con­

junction with the one-way shear-bond analysis. For continuous floor sys­

tems where shear-bond may be prevented, the yield-line method affords a 

very versatile direct approach for the determination of the predicted ulti­

mate load. 

A detailed review covering the yield-line methodology is contained in 

Reference (29) by Porter and Ekberg. This referenced report presents a 

literature review, general concepts, basic assumptions, methods of use, and 

application of the yield-line theory. A complete coverage of the develop­

ment of the yield-line theory and general application to slab systems is 

given in a text by Jones and Wood (17). 

Report Reference (29) also discusses and derives some basic mechanisms 

as applied to steel-deck reinforced slabs. The next two sections present 

the yield-line mechanisms considered in this investigation. 

Application of yield-line theory to steel-deck reinforced slabs 

Application of the principles of yield-line theory involves the compu­

tation of the flexural moment capacities in the longitudinal and transverse 

directions, respectively. Ultimate strength procedures for flexural compu­

tations were utilized for the determination of moments m and |im for the 

longitudinal and transverse directions, respectively. A detailed discus­

sion of methods for the strength computation of m and pm is given in Chap­

ters 6 and 7. 

In accordance with yield-line principles, several collapse mechanisms 

were investigated. The derivation of the work equations for two such mech­

anisms are presented. Figure 5 indicates one of the collapse mechanisms 
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Figure 5. First collapse mechanism for simply supported slab under com­
bined uniform and concentrated loading 

considered. 

First, the internal energy, I, for the mechanism in Figure 5, may be 

arrived at as follows: (using the vector summation of moments for each 

segment) 

1 = 2  ̂(PL)(i) + m L(̂ )j 

which may be reduced to 

I = 2m 
aPY 

+ a] (3) 

Next, the external energy is arrived at by considering the displace­

ment of the loads by giving the segment efgh a unit displacement. The ex­

ternal energy is as follows: 
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E = 2[(1 - 2Y)(pL)(C(L)w(l/2) + 2(1/2) (pYL) (aL)w(l/3) 

+ (1 - 2a)L(p>L)w(l/2) + 2(1/2) (aL)(PVL)w(l/3)] 

+ w(l - 2a)L(l - 2Y) PL(1) + 4P(1) 

which reduces to 

2 
E = ^ [- 3a + 4aY - 3y + 3] + 4P (4) 

Applying the principle of internal dissipation of energy equalling the 

external work, then Equations (3) and (4) are set equal, and solving for 

the required moment capacity gives: 

_ wa6^\Ii^(- 3a + 4aY - 3v+ 3) ZPgBY 
m — 2 "r 2 * ' 

6(nP Y+ Ot) p-p Y + a 

Equation (5) applies to the yield mechanism shown in Figure (5) and 

gives the correct design, m, only if this mechanism is the correct one. 

The most important parameter for the determination of the correct mechanism 

is the position of concentrated loads and the relative magnitude between 

the concentrated and uniform loads. 

The second general yield-line mechanism is shown in Figure 6. The 

vector summation of the moments for the internal energy is 

= 2 nin(PL)̂ -̂  ̂+ im(pL)̂ -̂  + mL 

which may be reduced to 

(6) 

Next the external energy is found by considering the displacement of 

the loads by giving segment abed in Figure 6 a unit displacement. The 
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Figure 6. Second collapse mechanism for simply supported slab under com­
bined uniform and concentrated loading 

external energy is as follows: 

E = 2[(1 - 2Y)(PL)(aL")w(l/2) + 2(1/2) (PYL) 

(aL")w(l/3) + (1 - 2a)L"(pYL)w(l/2) 

+ 2(l/2)(cxL")(YeL)w(l/3)] + w(l - 2a) 

(L")(i - 2v)(eL)(l) + 4P(1) 

which reduces to 

E = wflL L [- 3(x + 4(xY ~ 3y + 3J + 4P (7) 

Equating (6) and (7) and solving for m gives 

fj, _ wâp̂ (L )̂ (- Sg-t- Uay - 3v + 3) ̂  

+ i 

ZPoBL 

2 2 
Hp + iP + g w (8) 
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The designer must always assure himself, when using the yield-line 

approach, that he has reached a mechanism very close to the true case, 

since the predicted collapse load will be greater or at best equal to the 

true value. Such items as membrane action and torsional restraints in the 

slab will help the designer compensate for not finding the true collapse 

mechanism. 

Formation of fans 

Heavy concentrated loads can oftentimes cause a fan type of formation 

of yield lines such as that shown in Figure 7. The fan formations do not 

change the results significantly in the cases involving distributed loads 

only, but for cases involving heavy concentrated loads the fans will be 

centered on the load points and the value of the collapse load will be sig­

nificantly affected. 

- im 

A 
urn 

1 

Figure 7. Formation of fans under concentrated loads 
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For orthotropically reinforced slabs, advantage may be taken of the 

affine transformation to arrive at a solution by considering the slab as 

isotropically reinforced and the resulting fan as being circular in shape 

rather than elliptical as would be the case for the orthotropic slab. 

Development of a full circle will not always result in that the bounda­

ries may dictate that a partial circular fan is more critical. Develop­

ment of an expression for the collapse load for a circular fan is given 

by Jones and Wood (17). Thus, for the circular fan shown in Figure 8, the 

moment capacity, m, due to a concentrated load, P, and uniform load, w, is 

P + (1/3)TTRjW 

2TT(1 + i) 

- im 

(9) 

If the uniform load is negligible, then the 

required isotropic reinforcement, m, is given 

by 

m = 
2TT(1 + i) 

(10) 

Figure 8, Formation of 
circular fan 

If no top reinforcement is provided then i = 0 

and the collapse load is then P = 217 = 6.28m. 

Using the rules of affine transformation, 

then the collapse load for the elliptical fan for the orthotropically re­

inforced steel-deck slab is 

P = 2TrmV5"(l + i) (11) 

Tills iS qulLé ôii luuêïéSLlug ietiulL, Tor if no reinforcement is counted on 

in the transverse direction, then P = 0. Of course, this is unsatisfactory 

and the need is obvious for transverse reinforcement of some kind to be 
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present or counted on to prevent the breakup of the slab in a fan pattern 

of failure. Thus, if heavy concentrated loads are expected, then serious 

consideration must be given to the problem of transverse reinforcing. 

The yield-line theory was used in two approaches in this investiga­

tion. The first approach involved computation of the ultimate collapse 

load to predict the flexural capacity of steel-deck slab systems. Mech­

anism equations such as Equations (5), (8), and (11) were utilized to 

give the ultimate flexural capacity. The second approach involved the 

use of the yield-line theory to establish a mechanism for a controlling 

shear-bond mode of failure. Applications of these approaches and compu­

tational results are given in Chapter 7. 

Two-Way Slab Behavior as Predicted by Orthotropic Plate Theory 

Behavioral characteristics of deflection, bending moment distributions, 

and shear distributions of the full-size two-way floor slabs were analyzed 

by use of orthotropic plate theory. The basic analysis by orthotropic 

plate theory considered the steel-deck reinforced slabs as rectangular 

plates with simply supported edges. Orthotropic plate theory was selected 

for analysis of behavioral characteristics since the nature of the steel-

deck reinforcement provided much greater stiffness in the direction paral­

lel to the corrugations, whereas the stiffness at right angles to the cor­

rugations was relatively small. Load tests on slab elements with deck 

corrugations parallel to length and transverse to length were performed to 

glvê uuiiiei-lCdl values lor che stiffness in each orthogonal direcciori. 

The general differential equation governing the deflection of an 

orthotropic plate is given in References (19) and (48). Using the notation 
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given in Reference (19), the general differential equation is 

where 

q = uniform load 

z = vertical deflection 

X, y = rectangular coordinate locations 

D, = stiffness constant = 
1 12(1 - (1 - yZ) 

D_ = stiffness constant = 
2 12(1 - "i";) (1 - vl) 

= stiffness constant = 

Eĵ , Eg = modulus of elasticity in tension and compression in the 

principal direction 

1̂' ̂ 2 ~ Poisson's ratio in each of the principal directions of elas­

ticity (assumed equal to Poisson's ratio of concrete, v̂ ) 

d̂ , dg = effective depth in each orthogonal direction as measured 

from the top surface 

Ê  = modulus of elasticity for concrete 

(E I_) = flexural stiffness in x direction using transformed moment V c T X 

of inertia 

(Ê Î )y = flexural stiffness in y direction using transformed moment 

of inertia 

For the steel-deck reinforced slabs in this investigation,the y- and 

V-./1 4 r'/yr* 4 e f t.ro r»/%ne •? fio ••otn ê T̂ *"o A 

the corrugations, respectively. Thus, is really and is the stiffness 

transverse to the corrugations, whereas Dg is really and is the 
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stiffness parallel to the corrugations. The sign convention used for 

Equation (12) is shown in Figure 9. 

The use of d̂  and d̂  for computing the orthogonal stiffness is not 

included in References (19) and (48) but is included here as a means of 

approximating the stiffness in each orthogonal direction. The effective 

depth, d̂ , is considered only to the top of the corrugations, whereas d̂  

zy 

X 

(o) (T y 

V 

z 

Figure 9. Sign convention for orthotropic plate equations 
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is considered to the centroidal axis of the steel decking. Thus, the 

constants Dĵ  and use the EI stiffness of a transformed section for each 

orthogonal direction. 

The solution of Equation (12) is subject to the following boundary-

conditions of a simply supported plate: 

1) for X = 0 and x = a, z = =0, and 

2) for y = 0 and y = b, z = My = 0 

where a is the length along the x direction and b the length along the 

y direction. As given in Reference (19), the solution to Equation (12) 

is of the form of the series 

z = 2 ^ (13) 
1̂ n=l 

The coefficients are found by the expansion of q into a double Fourier 

series 

q = *mn si*  ̂ (14) 

where 

= lb j[ q si" (15) 

Substitution of Equations (13) and (14) into Equation (12) and comparing 

coefficients of identical terms gives the following expression contained 

in Reference (19) for the deflection: 

, . mTTx . nTTy 
b4 b 
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\ 

where c = a/b. The coefficients a ̂  depend upon the load distribution. 

For a uniformly loaded slab 

16q 

V " ' 2 
TT 
- (~j for m and n = 1, 3, 5, etc.. (17) 

and a =0 for all other m and n, where q, is the uniform load per unit 
mn 

area. For a concentrated load, P, at the point (§, k), such as was 

applied to four locations of the slabs in this investigation, the coeffi­

cients are 

(18) 

for all m and n. 

The differential equations for the various forces as given in Refer­

ences (19) and (48) are as follows for 

Moment; 

xy 

Shears 

' - (1 -
X y Bxôy 

\ ax ôy/ 

(19) 

(20) 
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Reactive Forces; 

for edge x = a, 

ôy 

for edge x = b. 

"y = (\ • % y = b 
(21) 

for the comers, 

R = 2(M ) x«a, y = b 
xy 

Using Equation (16) and substituting into Equations (19), (20), and 

(21), the following equations are obtained for the various forces: 

Djb 
a 

M = 
Dĵ b » 

y éiièt "> 

(I -  ̂A a cos ̂  cos -22J 

M___ = ;  2j 2̂   ̂

(24) 
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 ̂, 4 3 mîTx nTTy 
D,b CO m cos cos , ' 

a b 
3 m̂n / v4 o/_\2 
a " -1 -I Dif) + 2D/(=) + d/ 

Tx 1.2 2 mTTx . nTTy  ̂- = m. cos — sin 

* "&S'. . 
„ . 3 2 . mTTx . nTTy 
Djb » « nm sin — sin 

„ , 3 . mTTx nTTy 
D„b ®. «2. n sin cos , ' 

D̂ b̂  ̂  » m̂ (- 1)™ sin 
s. 

s^n ^ D,(ay + V(?)' + "2"' 

b2  ̂̂ mn̂ (- 1)° sin ̂  

„ ...T y - S S 

^ "S + ̂ vt) + v' 
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R = 
- (2)(1 - v̂ )(yjD:̂ )0>̂ ) 

2 
an 

(29) 

The corner reaction shown by Equation (29) was computed for all five 

slabs tested. However, only Slab 1 physically had corner tie-down reac­

tions during testing. The other four slabs were free to lift off their 

supports at each of the four comers and continued to lift inwardly as 

loading increased. Thus, the boundary conditions and resulting series 

equations employed using the orthotropic plate equations are only approx­

imate for the last four slabs. 

The orthotropic plate equations were programmed on an IBM 360 model 

70 computer. The number of terms of the series were all combinations of 

m and n each equal to nine making a total of 81 terms of each series solu­

tion. 

Three types of EI stiffness calculations were performed to establish 

1̂* ̂ 2' ®3* three were based on a transformed section by trans­

forming the steel to an equivalent area of concrete by multiplying by the 

modular ratio. The first type of stiffness was based upon an uncracked 

section and was used for analysis involving fairly low loads where the 

stresses in tension were less than the modulus of rupture stress of the 

concrete, f̂ . The second type of stiffness neglected the concrete in ten­

sion and considered the section completely cracked to the neutral axis. 

This second stiffness «es f«»r analyzing a cracked slab at higher loads. 

The third type of stiffness involved an approximation by considering 

an average of those sections which were uncracked and those sections that 
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were cracked. This was done by iteration in the orthotropic plate theory 

computer programs by cranparing the stress at the bottom fiber to the mod­

ulus of rupture, f̂ . If the f̂  was less than the computed fiber stress at 

the location in question, the stiffness was based upon a cracked section, 

whereas if the f̂  was greater than the computed fiber stress the stiffness 

was based upon an uncracked section. After each of the stiffnesses were 

computed, an average approximate stiffness to be used in the orthotropic 

plate computer program was formed by simply averaging all stiffnesses for 

all locations. 

Slab Behavior Based on Curve Fitting 

of Deflected Surfaces 

Since there were a significant number of vertical deflection measure­

ments made throughout the slab, most of which were located in one quadrant 

of the slab, curve fitting equations were established for various loads 

for each of the slabs. The curve fitting was based upon writing sixth 

order polynomial equations of the form 

2  2  •  3  3  
z = Ci + C2X + Ĉ y + Ĉ x + ĉ y + Cĝ  ̂+ CyX + ĉ y 

2  2  4  4  2  2  3  
+ CgX y + ĉ Qxy + ĉ x̂ + ĉ ŷ + ĉ x̂ y + ĉ x̂ y 

3  5  5  4  3 2  2 3  
+ ĉ gxy + ĉ gX + ĉ ŷ + ĉ gX y + ĉ x̂ y + CggX y 

4  6  6  2 4  3 3  4 2  
+ Cĝ xy + CggX + Cĝ y + Cĝ x y + CggX y + CggX y 

+ CgyX^y + Cggxy" (30) 
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The coefficients ĉ , ĉ , ĉ g were solved by a least squares com­

puter program designated as "ULSQ" which is a Fortran subroutine for curve 

fittings. This computer program was available through the Iowa State Uni­

versity Computation Center Library (16). 

One Equation (30) was determined for each load desired for each slab, 

then behavior characteristics in the form of force distributions were 

studied. This was done by employing the differential equilibrium Equations 

(19), (20), and (21) as was done with the orthotropic theory study. Thus, 

based on a given deflected surface the moments, shears, and reactive 

forces were found. The resulting polynomial expressions for moments are 

+ (/gĈ g) + 2y(Cg + 3v̂ Cg) 

+ 12ĉ x̂̂  + 6xy(ĉ  ̂+ l/gĈ )̂ + Uŷ ĉ ŷ̂  + ZOĉ x̂̂  

+ ZOî ĉ yŷ  + 12ĉ gX̂ y + IZŷ ĉ x̂ŷ  + 30ĉ x̂̂  

+ 30%/̂ Cggŷ  + 20cĝ x̂ y + ZOl/̂ ĉ x̂ŷ  + 2ĉ gX(3y2 + ŷ x̂ ) 

+ 2c^Qy(y^ + 3v^x^) + 2c^^y^(y + 6v^x^) + (2c^^ 

+ eCggXy) (ŷ  + i/gX̂ ) + 2c2gX̂ (6ŷ  + i/̂ x̂ )] (31) 

M y 

+ 

+ 

+ 

A /. 
+ 6ĉ gX>'' + 2c2Qy" + 30c + 2c ̂ ŷ" + ôĉ x̂y" 

(32) 
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May = - (1 - %/(.) [cg + 2CgX + + Aĉ x̂y + 3ĉ x̂̂  

2 3 2 2 3 
+ 3ĉ gy + 4ĉ gX + 6ĉ gX y + ôĉ gXy + 

3 2 2 3 4 41 
+ 8cĝ xy + SCggX y + Sĉ x̂ y + SCgyX + Sĉ gy J 

(33) 

The resulting polynomial expressions for the shear forces are 

= - D̂ jôCy + 24Cĵ ĵ x + 6cĵ ŷ + éOĉ x̂̂  + 24c 

+ 6c,gŷ  + l̂ OCggX̂  + Gcĝ ŷ  + 24Cgg:qr̂  + ̂ ĉ̂ yX̂ y] 

" Dj |2Ĉ q + + ôĉ ^̂ x + 12C2q37 l̂ Cĝ y 

+ 24c2̂ xŷ  + IBCggX̂ y + SCggX̂  + ZOCggŷ ] (34) 

Ny = ~ Dg ̂2Cg + 4c22y + Gĉ x̂ + 12ĉ gX + 12Cĵ gXy 

+ GCggŷ  + Scĝ ŷ  + IBCggXŷ  + + 200̂ %̂̂  

[2 2 6cg + 24ĉ ŷ + 6ĉ gX + 60ĉ yy + ôCggX 

:*y^] 

(35) 

+ 24c2ĵ xy + IZOCggy + 24ĉ x̂ y + SCĝ x + SOCgg. 

The resulting polynomial expressions for the reactive forces are 

= - D̂ jôCg + 24cĵ ĵ x + 6ĉ ŷ + GOĉ x̂̂  + 24ĉ gXy + ôĉ ŷ̂  

+ 120c22X̂  + + 60c2yX̂ yj + (- + 1 - V̂ ) 

[2C10 + 4ĉ 3X + eĉ ŷ + Gĉ gxZ + 12c2oXy + Uĉ ŷ̂  

2 2 3 i 3"l 
' O/. *• «M» .1. 1 V JL A V JL 00<* I? I 

 ̂  ̂ * *"̂ '̂ 28'' J —̂' 
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Vy = (- D3 + 1 " Kc) [̂ *̂ 9 + + Gĉ x̂lZĉ gX̂  + 12ĉ gxy 

+ Gcggŷ  + + ISĉ x̂ŷ  + + ZOCgyX̂ '] 

[2 2 6cg + 24c^2y + Gĉ gX + 60ĉ yy + ÔC^qX + 24c2̂ xy 

+ igWCggŶ  + 24c2̂ x̂ y + 6025%̂  + 60c2gXŷ ] (37) 

The coordinate points for v̂ lch vertical deflections were selected 

for the least squares curve fitting Included boundary deflections for 

corner uplift and zero displacement as well as interior coordinate loca­

tions. The number of selected points ranged from 80 to 137. Symmetry of 

measured deflection points was utilized to reach this number of points to 

obtain the proper surface equations for the deflected shape of the experi­

mental slab specimens. The results of moment, shear, and reaction force 

computations were compared to those obtained by ordinary orthotropic plate 

theory and to those obtained by reduction of measured strain and reaction 

data. 
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CHAPTER 3. DESCRIPTION OF TEST SPECIMENS AND EQUIPMENT 

Description of Slab Specimens 

General remarks 

All five of the steel-deck reinforced full-scale slabs were supported 

and tested as shown in Figure 10. All slabs were simply supported with 

roller and pin bearing supports on the south and north sides, respectively, 

as shown and with ball-bearing-ball caster bearing supports on the west 

and east sides. 

I 4'-0" I 4'-0" I 4' -cr I 

PIN REACTIONS 

% 

TYP 
KOLLEK TRANSDUCERS' OILERS 

Figure 10. General layout of full-scale slab tests 
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The design thickness for the first four slabs was established at 

4.5 inches and for the fifth slab was 5.5 inches. However, the thickness 

of each slab deviated somewhat due to variations in deflection under the 

weight of the wet concrete. The actual thickness was measured at various 

points throughout the slab and these values were utilized in the analysis. 

The primary reinforcement for the slabs was corrugated cold-formed 

steel decking furnished by the manufacturer. The first three slabs con­

tained nominal 20-gage steel decking with 1%-inch corrugations as sup-

ic 
plied by Company I. The fourth slab contained nominal 24-gage decking 

with 1 5/16-inch deep corrugations as supplied by Company G. The fifth 

slab contained nominal 20-gage decking with 3-inch deep corrugations as 

supplied by Company 0. 

Supplementary reinforcement in the form of welded wire fabric (WWF) 

was utilized in three of the five slabs. Slab 1 contained fabric commonly 

designated 6 X 6 X 6/6, i.e. number six gage wires on six-inch center-to-

center spacing in both longitudinal and transverse directions. Slab 2 

contained 6 X 12 X 0/4 WWF with the zero-gage wire on six-inch centers 

spanning the 16-foot direction and the four-gage wire on 12-inch centers 

spanning the 12-foot direction. The welded wire fabric in Slabs 1 and 2 

was placed directly on top of the steel decking. Slabs 3 and 4 did not 

contain any reinforcement in addition to the steel decking; however, the 

decking used in Slab 4 is manufactured with deformed wire no. D-4 spot-

welded to the top of decking with the wire transverse to the direction of 

the corrugations. Slab 5 had only 6 X 6 X 10/10 WWF which was placed 

* 
Each steel dec% is Identified by a letter, omitting the name of the 

supplying company, to avoid direct comparison. 
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approximately 1 to 1% inches from the top surface of the slab. 

Materials 

The materials used in the construction of the test slabs consisted of 

corrugated cold-formed steel decking, supplementary reinforcement steel, 

and Portland Cement Concrete. No effort was made to alter the characteris­

tics of those materials from what would be expected in a normal construc­

tion job. For example, the steel decking was used in an "as received" 

condition from the manufacturer except care was taken to insure that the 

reinforcement was free of grease and oil. 

Steel decking and supplementary steel The nominal 20-gage steel 

decking used in Slabs 1, 2, and 3 was manufactured from sheets of steel 

conforming to American Society for Testing and Materials specification 

designation ASTM A611-70 (formerly ASTM A245-64) having a minimum yield 

point of 33,000 psi. The surface coating consisted of an iron phosphate 

treatment applied prior to forming. The configuration of this 20-gage 

steel decking for a one-foot wide typical section is shown in Figure 11. 

•b 

U2.50'4^3.50«I-h-I ll.SO" 
1 

EMBOSSMENTS 

Figure 11. Typical view of steel decking utilized in Slabs 
1, 2, and 3 
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The nominal 24-gage steel decking used in Slab 4 was manufactured 

from sheets of steel conforming to ASTM A446-71 specification for grade 

E steel having a minimum yield strength (0.5 percent offset method) of 

80,000 psi. The deck units were galvanized under the 1.25 oz. per square 

foot coating class conforming to ASTM A525-71. The decking had transverse 

deformed no. D-4 wires (commonly called T-wires) spaced on three-inch 

centers attached by spot welds to the top corrugations. The configuration 

of the 24-gage steel decking for a one-foot wide typical section is shown 

in Figure 12. 

Figure 12. Typical view of steel decking utilized in Slab 4 

The three-inch-deep steel decking utilized in Slab 5 was manufactured 

from sheets of nominal 20-gage steel conforming to ASTM A611-70 specifica­

tion having a minimum yield point of 33,000 psi. The steel had a wiped 

coating of zinc conforming to ASTM A525-71 and to Federal Specification 

QQ-S-775d Type 1, class e. The configuration of this decking for a typical 

repeating section is shown in Figure 13. 

Tensile tests were run on selected coupons cut from the steel decking, 

welded wire fabric,and T-wires to determine the modulus of elasticity, 

yield strength, and tensile strength. The tensile tests for the steel 

TRANSVERSE WIRES 

SPOT WELDS 
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^-EMBOSSMENTS 

TT 

ii • «0 
O • 

Figure 13. Typical view of steel decking used in Slab 5 

decking conform to ASTM designation A370-71b. The tensile tests for the 

welded wire fabric and the deformed T-wires conform to ASTM A82-70 and 

A496-70, respectively. The typical properties and average results of at 

least three such tensile tests for the steel decking, the various gage 

sizes of WWF, and the deformed T-wires are contained in Table 2. 

The steel deck moment of inertias for positive bending and for nega­

tive bending were calculated by utilizing a computer program based on pro­

cedures outlined in the American Iron and Steel Institute's design speci­

fication entitled "Specification for the Design of Cold-Formed Steel Struc­

tural Members" (5). 

Two of the tensile specimens for the steel decking were instrumented 

with strain gages in the longitudinal and transverse directions as a means 

of determining Poisson's Ratio and a check on the stress-strain relation­

ship. Tliê âvci-'âgc Pûl&âùu's Râclo is sliOwii iu Tàule 2, Typical stress vs. 

strain curves for the steel deckings, welded wire fabrics, and T-wires are 

shown in Figure 14. 



www.manaraa.com

Table 2. Material properties of steel decking, welded wire fabric, and 
deformed wire 

20-gage 24-gage 20-gage 
Type I Type G Type 0 

Property Decking Decking Decking 

Steel thickness or 0.0369 0.0252 0.0347 
diameter (inches), t̂  

Cw 

Area of steel, A , A , or A 0.625 0.376 0.575 
(in.2/ft> = =1 =2 

Deck moment of inertia, 0.267 0.0998 0.875 
Igj(in.̂ /ft) 

Deck moment of inertia, 0.227 0.0854 0.683 
Isnfl"' /ft) 

Deck moment of inertia, 0.240 0.0854 0.842 
Î (̂in.Vft) 
sp 

Modulus of elasticity, 29,400 30,500 31,000 
Eg (ksi) 

Yield point or strength, 42.2 101.6(.5%) 49.4 
Fy (ksi) 

Ultimate strength, 59.6 103.8 56.0 
(ksi) 

Rupture Strength, 50.0 92.7 48.3 
Fj. (ksi) 

Percent elongation 19.5 0.6 21.0 
(8 in. length) 

Percent elongation 35.3 2.5 32.0 
(2 in. length) 

Poisson's Ratio 0.282 0.217 0.278 
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6-gage No. D-4 4-gage 0-gage 10-gage 
WWF Deformed WWF WWF WWF 
wire wire wire wire wire 

0.191 0.212 0.222 0.304 0.134 
(Avg. Dia.) 

0.057 0.1504 .039 0.145 0.0282 

27,800 35,200 27,900 27,800 26,500 

79.0(.5%) 92.1(.5%) 84.6(.5%) 82.6(.5%) 119.4(.5%) 

84.5 105.4 95.8 88.2 122.0 

53.0 77.3 76.6 65.3 93.5 

— 3.7 — — — 

5.5 - 5.8 7.0 5.4 
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20 

WWF NO. 10 GAGE 

NO. D-4 DEFORMED WIRE 

24 GAGE TYPE G DECKING 
WWF NO, 4 GAGE 
WWF NO. 0 GAGE 

WWF NO. 6 GAGE 

i 20 GAGE TYPE I DECKING 

\ 20 GAGE TYPE O DECKING 

1 1 
0.04 0.08 0.12 0.16 0.20 0.24 

STRAIN - in/in 
Figure 14. Typical stress vs. strain curves for tensile tests of coupons 

for the steel decking, welded wire fabric, and deformed wire 

Concrete The concrete used in this investigation was purchased 

from a local ready-mix plant. The concrete was ordered to meet the fol­

lowing specifications: 

1. minimum of 3,000 psi ultimate compressive strength in seven days, 

3. 2%- to 3%-inch slump, and 

4. no reducing agents or admixtures. 
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The concrete mix consisted of approximately 1466 lb /cu. yd. of fine aggre­

gate, 1868 lb /cu. yd. of coarse aggregate, and 470 lb /cu. yd. of cement. 

The ultimate compressive strength, f̂ , was determined from an average of 

6 X 12-inch control cylinders tested in accordance with ASTM C39-71. 

Testing of the cylinders occurred within one day of testing of slab speci­

mens. Modulus of rupture and split cyclinder strengths were determined by 

ASTM C78-64 and ASTM C496-71 standards, respectively. The actual resulting 

measured values of the concrete properties for each pour and for each set 

of specimens within a pour are contained in Table 3. 

Stress-strain properties of the concrete used in the slab tests were 

determined by placing strain gages axially on the surface of four of the 

6 X 12-inch cylinders. A Poisson's Ratio of 0.17 for this concrete mix 

was determined by placing strain gages transverse to the vertical ones on 

two of the same four cylinder tests. The experimental stress-strain re­

sults gave a value of the modulus of elasticity of concrete quite close 

to that as computed by the method in the ACI Code (2). Thus, the modulus 

of elasticity used in this investigation was computed from the ACI Code's 

recommended method. 

Fabrication, casting, curing, and shore removal of slab specimens 

Fabrication Fabrication, along with subsequent casting and curing 

of the full-scale test slabs, was accomplished in place directly on the 

slab reactions. Fabrication of each of the slab specimens was accomplished 

in the following steps: 

^ K j x .  u u  w i e  i r a m e  s u p p o r c s ,  

2. construction of shoring, 

3. attachment of strain gages to the steel decking. 
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Table 3. Summary of concrete properties 

Date of 
Casting 

Concrete 
Pour 
Number 

Specimens 
Formed 
From 
Casting 

Average 
Compressive 
Strength 
f̂ , psi 

10/4/69 26 transverse slab elements 
Nos. 1 and 2 

4300(5) 

11/30/70 28 Slab 1 4157(7) 

5/21/71 29a Slab 2 3538(12) 

5/21/71 29b longitudinal slab elements 
Nos. 1 and 2 

3931(2) 

5/21/71 29b longitudinal slab elements 
Nos. 3-6 

4036(3) 

7/16/71 30 Slab 3 3951(10) 

9/30/71 31 transverse slab elements 
Nos. 3-7 

3479(2) 

10/14/71 32a Slab 4 3835(10) 

10/14/71 32b longitudinal slab elements 
No. 7 

3947(2) 

10/14/71 32b longitudinal slab elements 
No. 8 

4117(2) 

10/14/71 32c transverse slab elements 
Nos. 8-10 

4142(2) 

2/15/72 33 longitudinal slab elements 
Nos. 9-18 

4451(3), 4453(3) 
4622(3), 4542(3) 

2/28/72 34a Slab 5 4300(8) 

2/28/72 34b longitudinal slab elements 
Nos. 19-20 

4419(4) 

4/5/72 35 longitudinal slab elements 
Nos. 21-30 

3631(3), 3701(3) 
3924(3) 

A/! 0/75» 36 1 4 a 1 m 1 ^ 1 
^ * M W Jb WO 

Nos. 31=39 3530(4) 

8/4/72 37 transverse slab elements 
Nos. 11 and 12 

3717(6) 
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Average 
Slump, 
inches 

Age 
.of 
f̂ .days 

Modulus 
of 

Rupture, 
f̂ , psi 

Age of 
Modulus 

of Rupture, 
days 

Split 
Cylinder 
Tensile 

Modulus, psi 

Age of 
Split 

Cylinder 
Test,Days 

2 3/4(3) 

2 1/2(5) 

5 1/2(3) 

5 1/2(3) 

33 

15 

17 

21 

466(4) 

485(3) 

470(2) 

33 

21 

17 

529(6) 

456(5) 

482(5) 

33 

22 

27 

5 1/2(3) 25 

3 (3) 17 

3 1/4(4) 18 455(4) 

3 1/4(4) 16 521(4) 

3 1/4(4) 19 

19 

16 

422(4) 

451(3) 

454(4) 

17 

19 

16 

3 1/4(4) 22 

3 1/4(4) 21 501(2) 21 

2 (3) 

2 (3) 

2 (3) 

14, 15 
17, 18 

17 

18 

554(2) 17 504(4) 17 

3 1/4(2) 

3 MOJW 

2 (7) 

14, 15 
16 

1.4, 15 
16' 

21 483(9) 21 438(5) 21 
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4. placement of the steel decking on the supports, 

5. placement of the welded wire fabric (Slabs 1, 2, and 5 only), 

6. installation of deflection dials direction underneath the steel 

decking, 

7. placement of lifting anchors, 

8. attachment of wooden dowels to steel forms to provide holes for 

later attachment of end-slip measuring dials (except Slab 1), and 

9. placement of the concrete. 

The slab specimens were made with the aid of prefabricated, adjustable 

steel forms supplied by the Economy Form Company of Des Moines, Iowa. 

Prior to placement of the concrete, these forms were coated with a non-

staining, paraffin form oil to insure easier stripping. Figure 15 shows 

an overall view of the assembled side forms with the steel decking in place 

prior to placement of the welded wire fabric (Slabs 1, 2, and 5) and of the 

Figure 15. Overall view prior to placement of the concrete 
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concrete. The view in Figure 15 is from the northeast corner looking 

towards the southwest comer. Included in this figure are wooden walkways 

on the east and west sides of the slab. These walkways along with three 

additional walkways,which span between those shown in Figure 15, were 

constructed to aid in placement of the concrete and also to provide a 

walkway during testing. 

A more detailed view of how the steel forms were supported is shown 

in Figure 16. The steel forms were bolted through an approximately one-

inch-high wooden spacer to a %-inch-thick steel plate which in turn was 

bolted over a nominal 4 X 4-inch piece of timber to the steel wide-flange 

support beams. The pin, roller, and ball-bearing-ball caster reactions 

were placed on or attached to the %-inch steel plate. An inside view 

STEEL FORM 

2" WOODEN 
SPACER 

1/2" STEEL PLATE 

4" X 4" TIMBER 

Figure 16. East support beam showing form fabrication for 
slabs 
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of the pinned and ball-bearing-ball caster supports and of the steel forms 

prior to placement of the steel decking is shown in Figure 17. In Figure 

17, the pinned reactions consisting of steel plates welded to rollers are 

seen on the left side (north side of slab), and the ball-bearing-ball 

caster reactions are those on the right side (east side of slab). Short 

segments of steel plates were placed between the ball-caster reactions on 

the right and the steel decking for the purpose of transmitting the load 

down from the slab to the reaction at every one-foot interval (except 

Slab 4 where the interval was approximately 14 inches). 

One line of shoring was provided for all slabs at midspan of the 

12-foot length and placed transverse to the direction of the corrugations 

of the steel decking. This shoring was constructed from pieces of tî mber 

Figure 17. Northeast corner of slab support frame showing 
support reactions and form assembly prior to 
casting 
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4 X 4  i n c h e s  i n  n o m i n a l  s i z e .  T w o  p i e c e s  w i t h  a  t o t a l  l e n g t h  o f  a p p r o x ­

imately 16 feet were positioned horizontally with the top side at the 

predetermined level of the bottom of the steel decking. The horizontal 

members of the shoring for Slab 1 were supported at midspan of the 16-foot 

direction by a 4 X 4 timber post and at the ends by the reaction support 

steel wide-flange beams. Due to the deflection of the shoring which 

occurred for the first slab, the remainder of the slabs had the 4x4 timber 

posts at approximately the 1/6 points of the 16-foot span to provide for a 

minimal amount of shoring deflection due to the wet concrete. 

Before placement of the steel decking, strain gages were attached to 

the bottom side of the steel decking. These gages were wired and connected 

to indicator units prior to placement of the concrete. 

After placement of the shoring and strain gages, the steel decking was 

put in place by simply laying it in place so that it rested on the plates 

over the ball-bearing-ball caster supports along the east and west sides 

and along the shoring in the center. The width of each steel deck panel 

was 24 inches in the first three slabs, 32 inches in the fourth slab, and 

36 inches in the fifth slab. The side-laps of the decking in Slab 5 were 

fastened by spot welds at 4-foot intervals in preformed holes as per manu­

facturer's recommendations. After placement of the deck panels in the first 

three slabs, a space of approximately 3/8 of an inch existed along the 

south edge where the panels did not completely cover the 16-foot direction. 

This space was filled with a plywood strip. Caulking compound was then 

used between the prefabricated forms and the decking to prevent the con­

crete from seeping through. 

Once the decking had been placed, the welded wire fabric was placed. 
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The 6 X 6 X 6/6 fabric in Slab 1 and the 6 x 6 x 10/10 fabric in Slab 5 

came in rolls six feet wide, and, therefore, it was necessary to lap this 

fabric to obtain the 12-feet X 16-foot slab dimensions. The lapping was 

accomplished by laying these pieces of the 6-foot wide sections 12 feet in 

length side by side to form the 16-foot length giving a one-foot side over­

lap between each section. 

The fabric in Slabs 1 and 2 was placed directly on top of the steel 

decking. The fabric in Slab 5 was placed on 1-inch-high slab bolsters 

which in turn rested on the top fibers of the decking; however, the flexi­

bility of the 6 X 6 X 10/10 fabric in Slab 5 did not lend itself to a uni­

form placement of the fabric at this level. 

The 6 X 12 X 0/4 welded wire fabric in Slab 2 came in sheets 6'-6" 

X 11'-0", again necessitating lapping. The lapping was accomplished by 

placing one sheet in each quadrant of the slab and cutting (with a torch) 

until the lap consisted of one space each way. Thus, the laps were sym­

metrical about each centerline of Slabs 1, 2, and 5. 

Special-purpose slab lifting anchors with a working tensile load capa­

city of 2,000 pounds each were purchased. These anchors were placed on top 

of the steel decking along the east and west edges in approximately the 

center part of each two-foot wide section and spaced about 10 inches in­

ward from the east and west edges of the slab. Thus, a total of 16 slab 

anchors (8 on each side) were placed prier to pouring of the concrete. 

One-half-inch-dlameter wooden dowels about 4 inches long were attached 

to the steel forms at various locations along the east and west sides of 

the Slabs 2, 3, 4, and 5 prior to placement of the concrete. After curing 

of the concrete, these dowels were drilled out and one-half-inch-diameter 
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steel rods were inserted in the holes for attachment of mechanical dials. 

Casting Placing of the concrete for the five slabs occurred on 

November 30, 1970, May 21, 1971, August 2, 1971, October 14, 1971, and 

February 28, 1972. The concrete was delivered by a conventional ready-mix 

truck and was conveyed to the slab forms by means of a bucket supported 

from an overhead crane. The concrete was ordered to be delivered with a 

minimum amount of added water. Upon delivery, slump tests meeting ÂSTM 

C143-71 specifications were taken to determine the amount of water needed 

to bring the slump up to the 2%- to 3%-inch specified range. In the case 

of Slab 2,the slump was already over the specified range so no added water 

was needed. Periodically, during casting, additional slump tests were 

taken as a check on the consistency and a small amount of water was added 

if needed, to insure workability of the mix during the remaining period 

of concrete placement. The average slump for each slab was given previ­

ously in Table 2. 

Control specimens consisting of plain concrete cylinders and beams 

were prepared in accordance with ASTM C31-69 specifications. The cylin­

ders were made using 6 X 12-inch waxed cardboard cylinder molds and cast 

at intervals during the concrete pouring of the slabs so as to obtain a 

representative average of the concrete strength. The plain concrete beams 

of dimensions 6 X 6 X 30 inches were cast in order to obtain the modulus 

of rupture. No modulus of rupture beams were made for Slab 3 due to lack 

of concrete. 

Placing of the concrete in the slabs began at the south end and pro­

gressed across the slab to the north end. A concrete finisher, who is 

normally employed by a %ocal building construction contractor, was engaged 
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to help handle the placing and finishing operations on all slabs except 

Slab 5. An internal vibrator normally employed in field operations and 

supplied by the contractor was used by the concrete finisher to obtain 

satisfactory compaction and placement of the concrete. 

Just prior to placement of the concrete, weights were laid on top of 

the decking and welded wire fabric along the east and west reactions to 

help prevent movement of the decking and fabric on the supports and to pre­

vent movement of reaction plates between the bearing supports and the 

decking. As pouring of the concrete progressed, these weights were re­

moved. The total concrete placing time for each slab was approximately 

one hour and ten minutes. 

After final screeding and after a short time lapse, the concrete fin­

isher proceeded to trowel the final finish surface on the slabs. The sur­

face was finished to a very smooth texture to aid in placing strain gages 

on the concrete surface. During final finishing the lifting anchors were 

located and the concrete removed over them sufficiently to allow later in­

sertion of the screw lift hooks. 

Curing and shore removal Six hours after placement of concrete, 

the slab, the test slab control cylinders, and modulus of rupture specimens 

were covered with wet burlap over which were placed sheets of plastic. 

Three days later the prefabricated steel forms were removed from the sides 

of the slabs along with the molds for the flexure beams and control cylin­

ders. After the seven days of curing, the wet burlap and plastic were re­

moved and all concrete was exposed to normal room condlelons until tARted, 

Throughout the curing from the time the slabs were cast until the time 

of testing, the laboratory temperature and humidity were continuously 
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recorded on a hygro-thermograph. These recordings are summarized in 

Table 4. 

Table 4. Average values of recorded temperature and humidity for slab 
tests 

Wet Curing Room Curing 

Slab No. 
Temperature 

(OF) 
Humidity 

(7o) 
Temperature 

(OF) 
Humidity 

m 

1 71 43 74 32 

2 85 65 75 40 

3 80 68 74 62 

4 75 76 75 67 

5 — — 71 26 

Shore removal for Slabs 1 and 3 took place during the wet curing of the 

concrete after which time the concrete had obtained a maximum strength of 

2500 psi. The approximate concrete cylinder strengths at the time of 

shore removal for each slab are summarized in Table 5. 

Table 5. Summary of shore removal for full-scale slabs 

Slab No. 
Days after casting 
until shore removal 

Approximate concrete strength 
at time of shore removal (psi) 

1 5 2800 

2 10 3519 

3 5 2635 

4 9 3307 

5 7 3590 
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Description of Slab Element Specimens 

Slab éléments with deck corrugations transverse to their length 

The flexural capacity of 12 slab elements constructed with transverse 

steel decking was obtained in order to ascertain the amount of two-way 

action which may be expected in the conQ)anion slabs. The transverse spe­

cimens consisted of two-foot wide slab strips, six feet in length as in­

dicated in Figure 18. 

The primary reinforcement for seven of these transverse specimens 

was the 1%-inch-deep steel decking corresponding to Slabs 1, 2, and 3; the 

primary reinforcement for three slab elements was the nominal 24-gage 

1 5/16-inch-deep decking like that in Slab 4, and the primary reinforce­

ment for two specimens was the nominal 20-gage 3-inch-deep steel decking 

like that in Slab 5. Of the seven elements containing the 20-gage 1%-

inch-deep decking, two had 6 X 6 X 6/6 welded wire fabric placed directly 

on top of the decking, two had 6 X 12 X 0/4 wire fabric placed directly 

Figure 18. Typical test on slab element with transverse decking 
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on top of the decking oriented like in Slab 2 with the zero-gage wire 

transversing across the corrugations, and the remaining three of the 

seven contained no welded wire fabric. 

The only additional reinforcement utilized in those transverse speci­

mens containing the 24-gage steel decking is that of the deformed T-wires 

which were attached to the top of the decking. Since the deformed wire 

transverses the corrugations, the wire is in a position to help reinforce 

the slab element and to help distribute forces transverse to the corruga­

tions. Like In Slab 5, the two transverse specimens containing the 20-

gage 3-lnch deep steel decking also contained 6 x 6 X 10/10 welded wire 

fabric. However, this fabric was located approximately 1% Inches from the 

top fiber of concrete. 

Table 6 summarizes the basic characteristics of these transverse spe­

cimens, Included in Table 6 are the specimen depths, primary and supple­

mentary reinforcing, the concrete pour number and the age of the specimen, 

the concrete compressive strength, modulus of rupture, and split cylinder 

strength for each concrete pour may be found by looking at Table 3 for each 

pour number. The typical steel stress vs. strain diagrams for each type 

of decking and supplementary reinforcing contained in the transverse speci­

mens were shown in Figure 14. 

Slab elements with deck corrugations parallel to their length 

In addition to the mâny one-way slab element specimens tested prior 

to the full-scale slab testing program, 39 one-way elements were tested in 

 ̂  ̂̂ A##  ̂  ̂̂ ̂  AAA A 1 A A 1 A A  ̂A A .S A.  ̂  ̂̂ ̂  ̂  w«*w MWJ XiiCOC OXOU CXdUCUUO llOVX UiiC bUCCJU 

decking oriented in a direction parallel to the specimen length (longitu­

dinal specimens). An indication of the typical longitudinal slab element 
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Table 6. Summary description of 6* X 2' slab elements with steel 
decking oriented transverse to specimen length (See 
Figure 18) 

Specimen 
Transverse Concrete Reinforced Out-to-out 
Specimen Pour Similar to Depth, 
No. No.® Slab No. Inches 

1 26 3 5 

2 26 3 5 

3 31 2 4% 

4 31 1 4% 

5 31 2 4% 

6 31 1 4% 

7 31 3 4% 

8 32c 4 4% 

9 32c 4 4% 

10 32c 4 4% 

11 37 5 5% 

12 37 5 5% 

*Refer to Table 3 for concrete strengths. 

Material properties for steel reinforcing are given in Table 2. 

T̂his gage thickness is not the same as that of the decking used in 
Slab 1. 

The 6 X 12 X 0/4 WWF was oriented with zero gage wire transverse 
to deck corrugations. 

®The 6 X 6 X 10/10 WWF was located approximately one-inch from the 
top surface of the concrete. 
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Steel Deck Reinforcement̂  

Nominal 
Gage 

Thickness 

Nominal 
Depth of 
Decking, 
Inches 

Typical Cross 
Section of 

Decking Shown 
in Figure 

Supplementary 
Reinforcing 

Number of 
Days from 
Casting to 
Testing 

u CM CM 

1 1/2 11̂  none 33 

16̂  1 1/2 11̂  none 33 

20 1 1/2 11 6 X 12 X 0/4*̂  18 

20 1 1/2 11 6 X 6 X 6/6 18 

20 1 1/2 11 6 X 12 X 0/4̂  19 

20 1 1/2 11 6 X 6 X 6/6 19 

20 1 1/2 11 none 19 

24 1 5/16 12 No. 4 deformed 
wire 

19 

24 1 5/16 12 No. 4 deformed 
wire 

21 

24 1 5/16 12 No. 4 deformed 
wire 

21 

20 3 13 6 X 6 X 10/10® 21 

20 3 13 6 X 6 X 10/10® 21 
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test is shown in Figure 19. 

Six of the 39 longitudinal slab elements were constructed as a pre­

liminary check on the determination of the effect of welded wire fabric 

resisting the shear-bond failure characteristics. These six were rein­

forced with nominal 20-gage steel decking like that used in Slabs 1, 2, 

and 3. Two of the six contained no welded wire fabric, two contained 

6 X 6 X 6/6 fabric, and two contained 6 X 12 X 0/4 fabric. The welded 

wire fabric was placed directly on top of the decking and oriented to 

correspond with the full-size companion slabs containing the same rein­

forcement. The overall size of these six one-way slab elements was 

6 ft by 2 ft by 4% in. 

Two longitudinal specimens were constructed with 24-gage decking as a 

Figure 19. Typical test arrangement with steel deck 
corrugations parallel to specimen length 
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check on the one-way capacity of Slab 4. This decking contained deformed 

wires spot welded to the tops of the corrugations at 3-inch intervals. 

The overall size of these two specimens was 12 feet in length by 34 inches 

in width by 4% inches in depth, and the loading was applied so as to con­

form with Slab 4. 

Two other longitudinal slab elements were constructed as a check on 

the one-way capacity of an element of Slab 5. These two specimens were 

12 feet in length, 36 inches in width, and 5% inches in depth, and loaded 

with a line loading placed at the same distance from the reactions as that 

of the load points in Slab 5. Like Slab 5, these two specimens were rein­

forced with nominal 20-gage 3-inch deep decking and 6 X 6 X 10/10 welded 

wire fabric placed approximately 1% inches from the top fiber of concrete. 

The remaining 29 longitudinal slab elements were constructed to ob­

tain one-way shear-bond regression coefficients for the 3-inch deep decking 

that was used in Slab 5. All of these specimens had nominal dimensions of 

36 inches in width and 5% inches in depth. Table 7 gives the number of 

slab elements constructed of each gage thickness for each length and shear 

span. No additional reinforcing other than the steel decking was used in 

these 29 slab elements. The material properties of the steel decking for 

each gage thickness for the 3-inch deep steel decking is given in Table 8. 

A complete summary of all longitudinal one-way slab element tests is -

contained in Table 9. The specimen type given in Table 9 refers to the 

main purpose for which the longitudinal specimen was tested. For example, 

if the specimen was constructed as a check on the one-way capacity of an 

element of a particular slab, it is listed as a companion type specimen 

giving the particular slab by which the one-way specimen was identically 
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Table 7. Number of slab elements constructed with each gage 
of deck for 29 specimens using 3-lnch deep decking 

thickness 

Shear 
Span, L' 
inches 

Total 
Length, L 
feet 

Number of Slab Elements Tested Shear 
Span, L' 
inches 

Total 
Length, L 
feet 16 gage 18 gage 20 gage 22 gage 

86 16 1® 1̂  l" 1= 

70 12 2'  2̂  3® 0 

48 12 0 0 3" 0 

48 10 3 3 0 0 

24 6 3 3 3 0 

Totals; 9 9 10 1 

D̂enotes that a central support (simulating shoring) was used. All 
other specimens were supported at ends only. 

Table 8. Material properties for 3-lnch steel decking used In 29 slab 
element tests 

Thickness of Steel Deck 

16 gage 18 gage 20 gage 22 gage 

3 
Modulus of Elasticity, ksl X 10 31.2 30.6 31.0 27.5 

Yield Point, ksl 42.9 42.1 49.4 43.6 

Ultimate Strength, ksl 52.5 51.9 56.0 54.4 

Rupture Strength, ksl 41.2 41.6 48.3 48.4 

Percent Elongation, 2 in. gage 
length 

28 29 21 44 

Percent Elongation, 8 in, gage 
length 

49 41 32 27 

Thickness, in. 0.0595 0.0453 0.0347 0.029 

f -
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Table 9. Summary description of slab elements with steel decking 
oriented parallel to specimen length (See Figure 19.) 

Number of 
Longitudinal Specimen size, Concrete Days from 
Specimen length X width X depth Pour Casting to 

No. (ft X ft X in.) No.* Testing 

Purpose; Test effect of WWF 

1 6 X 2 X 4% 29b 21 
2 6 X 2 X 4% 29b 21 
3 6 x 2 x 4 %  29b 24 
4 6 X 2 x 4 %  29b 25 
5 6 X 2 X 4% 29b 24 
6 6 x 2 x 4 %  29b 25 

Purpose: Companion to Slab 4 

7-8 12 X 2 5/6 X 4% 32b 19-22 

Purpose: 3-inch deck, shear-bond 

9-12 12 X 3 X 5% 33 14-15 
13-15 6 X 3 X 5 %  33 15-17 
16-18 12 X 3 X 5% 33 17-18 

Purpose: Companion to Slab 5 

19-20 12 X 3 X 5% 34b 17 

Purpose: 3-inch deck, shear-bond 

21 16 X 3 X 5% 35 14 
22 12 X 3 X 5% 35 14 

23-24 12 X 3 X 5% 35 15 
25-27 10 X 3 X 5% 35 15 
28-30 6 X 3 X 5 %  35 16 
31-33 6 X 3 X 5 %  36 14-15 
34-36 10 X 3 X 5% 36 15 
37-38 12 X 3 X 5% 36 15-16 
39 16 X 3 X 5% 36 16 

*Refer to Table 3 for concrete strengths. 
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Steel Deck Reinforcement Material 
Properties 

Nominal of Steel 
Nominal Depth of Typical cross Reinforcement 
Gage Decking, Section shown Supplementary Given in 

Thickness in. in Figure Reinforcing Table No. 

Purpose: Test effect of WW? 

20 ' 1 1/2 11 6 X 12 X 0/4 WWP̂  2 
20 1 1/2 11 none 2 
20 1 1/2 11 6 X 6 X 6/6 WWF 2 
20 1 1/2 11 none . 2 
20 1 1/2 11 6 X 12 X 0/4 WWF 2 
20 1 1/2 11 6 X 6 X 6/6 WWF 2 

Purpose: Companion to Slab 4 

24 1 5/16 12 
no. 4 deformed 

2 24 1 5/16 12 
wire trans, to 

Purpose: 3--inch deck. shear-bond 
corrugations 

20 3 13 none 8 
20 3 13 none 8 
20 3 13 none 8 

Purpose; Companion to Slab 5 

20 3 13 6 X 6 X 10/10 WWF 2 

Purpose: 3 inch-deck. shear-bond 

22 3 13 none 8 
16 3 13 none 8 
16 3 13 none 8 
16 3 13 none 8 
16 3 13 none 8 
18 3 13 none 8 
18 3 13 none 8 
18 3 13 none 8 
18 3 13 none 8 
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constructed. Other items included in Table 8 include specimen size, pri­

mary and supplementary reinforcing, concrete pour number, and the age of 

the specimen at the time of testing. The concrete compressive strength, 

modulus of rupture, and split cylinder strength for each concrete pour 

may be found by looking at Table 3. The material properties of the steel 

reinforcing is given either in Table 8 or in Table 2, as indicated in 

Table 9. The typical stress vs. strain diagrams for each type of steel 

decking and supplementary reinforcing used for each longitudinal slab 

element are shown in Figure 14. 

Test Equipment For Slab Specimens 

Test frame and loading apparatus 

All five two-way full-scale slab tests were conducted utilizing a 

self-contained loading frame comprising various structural steel wide-

flange shapes. Figure 20 indicates the framê zork used. The slab specimens 

rested on pin, roller, and ball-bearing-ball caster reactions which in turn 

rested on. the W27 X 94 and W24 X 68 support beams (see Figure 20). During 

testing, strains and deflections were taken on these beams. The resulting 

stiffness of the support beams and frame was considered as infinite in 

comparison to that of the slab specimens, and thus, the small deflections 

of the support beams were neglected in the analysis of the slab specimens. 

The pin, roller, and ball-bearing-ball caster reactions rested on a 

%-inch steel plate which in turn was bolted over a nominal 4 X 4-inch piece 

of timber to the W27 X 94 or W24 X 68 support beams. The placement of 

these reactions was described earlier during the casting phase. The pin 

supports were located along the north edge, the roller supports along the 
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W2I x73 

w 16X36 

W 24 X 68 

W 21 X 73 

w 16 X 36 

W 24x68 

w 16X36 

Figure 20. Framework used for testing two-way full-scale slab specimens 
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south edge, and the ball-bearing-ball caster supports along the east and 

west edges. The locations of these supports were indicated in Figure 3. 

Figure 21 shows the five types of reactions used. From left to right they 

are as follows: 

1. roller transducer, used along most of south reaction to measure 

vertical forces at one-foot intervals; 

2. ball-bearing-ball caster transducer, used along most of west reac­

tion to measure vertical forces; 

3. ball-bearing-ball caster attached to steel plate resting on nomi­

nal 4x4 timber, used along remaining west reaction and all of 

east reaction; 

4. pin reactions one-foot in length (two-inch-diamter steel rod with 

a steel plate welded on top), used along all of north reaction; and 

Figure 21. View showing slab reactions 
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5. roller reactions one-foot in length (two-inch-diameter steel 

rod), used along remaining south reaction. 

Loading of the test slabs was accomplished by two Enerpac 50-ton 

hand-operated hydraulic cylinders (model RC-5013T). These cylinders are 

shown in Figure 22 attached to the W30 X 190 beam by a roller assembly 

to facilitate movement. The clamps were used to prevent movement during 

testing. The load from each cylinder was divided into two concentrated 

loads by a W18 X 55 spreader beam. Elastomeric bridge bearing pads are 

visible in Figure 22 between each hydraulic cylinder and the top of the 

spreader beam. These pads had dimensions of 9 X 14 X 1 3/4 inches and 

were of medium expansion quality. Similar pads of dimensions 9X9X2 7/8 

inches were located at the four load points between the bottom of spreader 

beams and top surface of slab. 

Figure 22. Overall view of test arrangement 
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Instrumentation 

The items of instrumentation used for the five two-way slab tests 

consisted of the following: 

1. electrical strain gage rosettes and single strain gages placed 

on the top surface of the concrete, 

2. electrical strain gage rosettes and single strain gages placed 

on the steel decking corresponding in location to those on the 

concrete, 

3. vertical load transducers (roller and ball-bearing-ball caster 

types) to determine the reaction distributions, 

4. corner tie-down transducers on Slab 1 only to measure uplift 

force at the comers of Slab 1, 

5. static strain indicators and switching units for monitoring 

strain gage and transducer readings, 

6. mechanical deflection gages, and a theodolite for determining 

deflections, 

7. pressure gages for reading calibrated jack loads, 

8. deflectometer readings and/or mechanical deflection indicators to 

measure end slip along east and west edge of each slab, 

9. single strain gages at midspan of four of the support beams of 

test frame, 

10. mechanical deflection dials at midspan of two of the reaction 

support beams and at one or more corners of the reaction support 

beam frame, 

11. an illuminated six-power magnified comparator with graduated scale 

for measuring crack widths, and 
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12. a hygro-thermograph recorder to record temperature and humidity 

continuously throughout wet and dry curing of slab specimens. 

Table 10 Indicates a summary of the number of deflection and elec­

trical strain gage measurements made for each slab test. The locations 

of the strain gages, vertical deflection gages, end slip gages, and de-

flectometers are given In Figures 23, 24, 25, 26, and 27 for Slabs 1, 2, 

3, 4, and 5, respectively. As can be seen, the more highly Instrumented 

portion of the slabs was the southwest quadrant. 

The electrical strain gage measurements for all slab tests were made 

by use of various models of SR-4 portable strain Indicators each connected 

to a switching unit. Various types of strain gages were employed In the 

slab tests. These consisted of foil gages of %-lnch gage length for the 

steel and transducer applications and paper-backed wire gages of 0.8-lnch 

gage length for the concrete surface applications. Those strain gages 

applied to the top surface of the concrete were affixed to a previously-

made epoxy patch approximately two Inches square. This type of concrete 

strain application is described in Reference 15. Those strain gages used 

for transducer and steel deck applications were applied with epoxy and 

coated with commercial gage coatings. Those strain gages embedded inter­

nally in Slab 5 were also coated in wax to prevent damage and moisture 

leakage. All rosette strain gages indicated in Table 10 were rectangular 

rosettes except for five locations along the centerline of Slab 2 where 

advantage was taken of symnetry. 

The roller and ball-bearing-ball caster transducers each had their 

main load carrying members fabricated from structural aluminum to achieve 

the desired sensitivity for the expected load. Each ball-bearing 



www.manaraa.com

Table 10. Summary of number of deflection and strain gage measurements made for each slab test 

No. of No. of No. of No. of No. of 
reflection Strain Strain Gage Single Deflection 

Gages No. of No. of Gages Rosettes Strain Gages Gages 
Slab 
No. 

Including 
4 corners 

Deflecto-
meters 

End Slip 
Gages 

on Test 
Frame Cone. Steel Cone. Steel 

Under 
Test Frame 

1 39® 4 0 4 26 28 0 0 4 

2 32 4 8 3 13 16 1 1 4 

3 32 0 12 0 14 14 0 1 3 

4 32 0 12 4 14 14 0 1 4 

5 30 0 12 4 14 20 1 1 + 3̂  3 

*No corner uplift displacement gages were utilized on Slab 1 since corner tie-downs were used. 

T̂hiee strain gages were placed on steel rods embedded In concrete for Slab 5. 
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Figure 2 ) ,  Plan view of Slab 1 indicating locations of strain gages, reaction transducers, vertical 
deflection dials, end slip dials, and deflectometers 

Scale 

1" = 3' - 0" 

Notes 

(1) All strain gages on steel decking were 
mounted on bottom corrugation except as 
indicated by a T signifying that gage 
was mounted on the top corrugation 

(2) All deflectometers measured end slip at 
the bottom corrugations of steel decking 
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vertical deflection dials under 
support reaction beams 

single strain gage on support beams 
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strain gage rosettes on concrete and 
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O single strain gage on test frame 

corner tie-down transducer 
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corner tie-down assemblies 



www.manaraa.com

6' - 0" 

Ch 
I 

O 

if k 
4' - 0" I H 9 » W 

O 

I I 
(Bi| 

S 
T 
G3 

• 

S 

a 

Oi-

_l &sr 

o • 

a o 
T 1 T TI T T 

40 • 40f D+ • • 4a 

L.P. 
+o 

2' DECK 
PANEL-TYP. I 

I 
o o o o o 

o 
• 

TT 

8' - 0" 

ja_ 
6' - 0" 

• 
LjP. I oi 

•-
L.P. 

IT 

S 



www.manaraa.com

Figure 2k .  Plan view of Slab 2 indicating locations of strain gages, reaction transducers, vertical 
deflection dials, end slip dials, and deflectometers 

Scale 

1" = 3* - 0" 

Notes 

(1) All strain gages on steel decking were 
mounted on bottom corrugation except as 
Indicated by a T signifying that gage 
was mounted on the top corrugation 

(2) All end slips were measured at the bottom 
corrugations of steel decking 
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vertical deflection dials 

ball-bearing-ball caster reactions 

ball-bearing-ball caster transducers 

roller reactions 

pin reactions 

roller transducers 

end slip dials 

deflectometers 

• vertical deflection dials under 
support reaction beams 

e single strain gage on support beams 

L single strain gages on steel deck 
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Q deflection dial at same location as 
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deck and concrete to form 90° 
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single gage on concrete surface and 
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Figure 2!). Plan view of Slab 3 indicating locations of strain gages, reaction transducers, vertical 
deflection dials, and end slip dials 

Scale 

1" = 3' - 0" 

Notes 

(1) All strain gages on steel decking were 
mounted on bottom corrugation 

(2) All end slip measurements were made 
at Che bottom corrugations of steel 
decking 
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Figure 26. Plan view of Slab 4 Indicating locations of strain gages, reaction transducers, vertical 
deflection dials, and end slip dials 

Scale 

1" = 3' - 0" 

Notes 

(1) All strain gages on steel decking were 
' mouated on bottom corrugation 

(2) All end slip measurements were made at 
the bottom corrugations of steel decking 
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Figure 27. Plan view of Slab 5 indicating locations of 
deflection dials, and end slip dials 

Scale 

1" = 3' - 0" 

Notes 

(1) All strain gages on steel decking were 
mounted on bottom corrugation except as 
indicated by a T signifying that gage 
was mounted on the top corrugation 

(2) All end slip measurments were made at 
the bottom corrugations of steel decking 
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transducer had two strain gages on opposite sides diametrically mounted 

vertically and two on opposite sides mounted horizontally to form a com­

plete four-arm bridge wired to measure only vertical loads and to elimi­

nate bending effects. The roller transducers had a total of eight strain 

gages with four mounted on each leg consisting of two vertical (on oppo­

site sides) and two horizontal (on opposite sides). The eight gages were 

wired so as to be one complete four-arm bridge to measure only vertical 

loads and to eliminate bending effects. The final conversion of strains 

into loads for these transducers was accomplished by calibration and sub­

sequent linear regression analysis of load-strain data taken from loading 

the transducers in a screw action balanced weight testing machine. An 

additional calibration check of the transducers was performed in a 60-kip 

Southwark-Emery hydraulic testing machine. 

Three of the four corner tie-down assemblies used in the testing of 

Slab 1 were Instrumented with strain gages. The use of one of the tie-

down assemblies during testing is shown in Figure 28. The instrumented 

assemblies had a total of eight strain gages with four mounted as a com­

plete bridge on each rod. Each bridge had two opposite gages positioned 

vertically and two horizontally to measure only vertical loads. As was 

done with the other transducers, the strain to load conversion was made by 

calibration. The calibration was performed on a 60-kip Southwark-Emery 

hydraulic testing machine with a subsequent linear regression analysis 

performed on the data using a Hewlett-Packard electronic desk-top computer 

with a plotter. 

On Slabs 1 and 2, four deflectometers were attached to the top surface 

of concrete. These deflectometers consisted of small aluminum, strain-
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Figure 28. View of corner tie-down assembly 
to restrain uplift of the cor­
ners of Slab 1 

gaged cantilever beams with the free end attached to the steel decking as 

shown in Figure 29. The deflectometers were used to measure slippage be­

tween the steel deck and the concrete as were the mechanical end-slip 

dials on Slabs 2, 3, 4, and 5, The deflectometers were continuously moni­

tored by a BL-274 Brush amplifier and recorded by an oscillograph. The 

mechanical dial-gages to measure end-slip were mounted on rods which were 

firmly embedded In the concrete. The dial stem then rested on small cabs 

affixed to the steel decking. 

Vertical deflections were measured by mechanical deflection dial 
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Figure 29. View of a deflectometer assembly 
on Slabs 1 and 2 to measure slip 
between steel deck and concrete 

indicators until displacements exceeded the stem travel (approximately one 

inch), at which time deformations were taken by a surveyor's T-16 theodo­

lite. A wooden grillage frame was constructed beneath the level of the 

slabs for the purpose of supporting the mechanical deflection gages. This 

framework and a general view of the reactions for Slab 1 is shown in 

Figure 30. The dial support grillage was constructed so as to rest only 

on the bottom frame which rested on the laboratory floor in order to be 

completely independent of the slab reaction beam system. The corner uplift 

measurements for Slabs 2, 3, 4, and 5 were also made by mechanical gages 
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Figure 30. Grillage frame for supporting dials and gen­
eral view of reaction framework 

until stem travel was exceeded at which time the theodolite was used. The 

corner uplift gages were mounted on stands which in turn were mounted on 

the reaction beams. The deflections measured by the theodolite were accom­

plished with the aid of an engineer's scale to which a bull's-eye bubble 

was attached for leveling purposes. The smallest division on the engineers 

scale was 0.02 inches. 

Test Equipment For Slab Element Specimens 

Loading apparatus 

The loading of the one-way longitudinal slab element specimens num­

bered 1 through 20 in Table 9 was applied by a 400,000-pound capacity 

Baldwin-Southwark hydraulic testing machine. However, the loading of 
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longitudinal specimens numbered 21 through 39 In Table 9 was applied by 

the same framework and 50-ton hydraulic cylinders as used In two-way slab 

tests. This change was due to the availability of a new structural labora­

tory following testing of the first 20 specimens. 

The loading apparatus used for the one-way transverse slab element 

specimens numbered 1 through 10 in Table 6 was a 400,000-pound capacity 

Baldwin-Southwark hydraulic testing machine. Upon availability of the 

new structural laboratory, the same framework used in the slab tests was 

employed for specimen Numbers 11 and 12 in Table 6. The loading of these 

two specimens was accomplished by two 10-ton capacity Enerpac hydraulic 

cylinders (model number RC-lOlO) connected to a hand-operated hydraulic 

pump. These 10-ton cylinders were calibrated using a 60-kip capacity 

Southwark-Emery hydraulic universal testing machine. The cylinder cali­

bration took place after first performing a calibration check of the 

testing machine using a recently calibrated 15-kip proving ring. The cal­

ibrations for final pressure conversion to equivalent load values were 

determined from a best fit linear regression of the data. 

Instrumentation 

Instrumentation for the one-way slab elements was not the same for all 

specimens, but consisted of the following types: 

1. electrical strain gages placed parallel to specimen length on the 

top surface of the concrete at centerline of specimen, 

2. electrical strain gages parallel to specimen length on the top, 

side, and of the rorrugetioïis of the steel decking for a 

cross-section at centerline of specimen. 
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3. static strain indicators for monitoring strain gage readings, 

4. pressure dials for reading calibrated jack loads for those spec­

imens tested using hydraulic cylinders, 

5. mechanical deflection dial indicators to measure vertical deflec­

tions, 

6. mechanical deflection dial indicators to measure end-slip, 

7. curvature over a 10-inch gage length as measured by a Whittemore 

mechanical strain gage at centerline of specimen, and 

8. visual observation of crack patterns on all specimens with use 

of a six-power comparator for measuring crack widths on some 

specimens. 

Dial displacement gages were used on all the one-way slab element specimens 

to measure vertical deflections under the load points and at midspan. Dial 

displacement gages to measure slippage between the concrete and the steel 

decking (end-slip) were used on 24 or the 39 longitudinal specimens. No 

end-slip dials were used on the transverse specimens since no slippage 

could take place due to the corrugations. A detailed summary of the var­

ious types of instrumentation in addition to the vertical deflection dials 

for each of the one-way slab elements containing decking with corrugations 

parallel to length is given in Table 11, A similar summary of instrumen­

tation employed for those one-way specimens with the corrugations trans­

verse to the length is given in Table 12. 
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Table 11. Summary of instrumentation in addition to vertical deflection 
dials employed on one-way slab element longitudinal specimens 

Specimen 
No. 

Purpose of 
Specimen 

End-slip 
Measured? 

Crack Widths 
Measured? 

1-3 Test effect of WtfF yes yes 

4-6 fi II II II yes yes 

7-8 Companion to Slab 4 no no 

9-11 

12 

3-inch deck, shear-bond 

M II  I I  I I  

yes 

yes 

no 

no 

13 

14 

15 

II II II II 

II II II II 

II II II II 

yes 

yes 

yes 

yes 

no 

no 

16 II II II II yes yes 

17-18 11 II II II yes yes 

19 Companion to Slab 5 yes no 
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Strain gages? 
If so, number and description as to placement 

Special 
Instrumentation? 

no 

yes - 4 strain gages: top surface of concrete, 
internal embedded at 1 3/4 inches from top sur­
face, at levels of top steel deck corrugation on 
concrete (cut opening), and bottom fiber of bot­
tom corrugation of steel decking; all at mldspan 

yes - 4 strain gages: top surface of concrete 
and top and bottom corrugations of steel decking 
at mldspan and bottom corrugation under one load 
point 

curvature at mldspan 
by Whittemore 10-inch 
gage length 

curvature at mldspan 
by Whittemore 10-inch 
gage length 

no 

no no 

yes - 2 strain gages: top and bottom corruga­
tions of steel deck at mldspan 

used Whittemore strain 
gage on top fiber of 
concrete at mldspan, 
10-inch gage length 

no no 

no no 

yes - 5 strain gages: top surface of concrete; 
top, bottom, and side corrugations of steel 
decking at mldspan; and bottom corrugation of 
steel decking at one load point 

no 

yes - 5 strain gages: top surface of concrete; no 
top, bottom, and side corrugations of steel 
decking at mldspan; and bottom corrugation of 
steel decking at one load point 

yes - 4 strain gages: top surface of concrete; no 
top, bottom, and side corrugations of steel d 
decking at mldspan 

yes - 6 strain gages: top surface of concrete; no 
cop, bottom, and side corrugations of steel 
decking; and internal embedded at 2% inches from 
top surface at mldspan; and bottom corrugation 
of steel decking under one load point 
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Table 11. Continued 

Specimen 
No. 

Purpose of 
Specimen 

End Slip 
Measured? 

Crack Widths 
Measured? 

20 Companion to Slab 5 yes no 

21-23 

24 

25 

3-inch deck, shear-bond yes 

no 

yes 

no 

no 

no 

26-28 

29 

no 

yes 

no 

no 

30-31 

32 

no 

no 

no 

yes 

33 yes yes 

34-35 

36 

no 

yes 

yes 

yes 

37 

38-39 yes 

yes 

yes 
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Strain gages? Special 
If so, number and description as to placement Instrumentation? 

no no 

yes - 5 strain gages: top surface of concrete; no 
top and bottom corrugations and 90° rosette on 
side corrugation of steel decking at midspan 

no no 

yes - 5 strain gages: top surface of concrete; no 
top and bottom corrugations and 90° rosette on 
side corrugation of steel decking at mldspan 

no no 

yes - 5 strain gages: top surface of concrete; 
top and bottom corrugations and 90° rosette on 
side corrugation of steel decking at midspan 

no 

no no 

no Whittemore - 2 inch gage 
length used to measure 
crack widths at 4 3/4 
inches from top fiber 

yes - 5 strain gages: top surface of concrete; same as No. 32 
top and bottom corrugations and 90° rosette on 
side corrugation of steel decking at mldspan 

no same as No. 32 

yes - 5 strain gages: top surface of concrete; same as No. 32 
top and bottom corrugations and 90° rosette on 
side corrugation of steel decking at midspan 

no same as No. 32 

yes - 5 strain gages: top surface of concrete; same as No. 32 
top and bottom corrugations and 90° rosette on 
side corrugation of steel decking at mldspan 
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Table lî!. Summary of instrumentation employed on one-way slab element transverse specimens 
(See Table 6 for specimen descriptions) 

Specimen Number and Number and Location 
No. Location of Vertical Deflection Dials Of Strain Gages 

1 5: located at 2* (joint), 2' - 3", 
3* (%) , 3' - 9", and 4* (joint) from 
end of specimen 

none 

2 3; 
4' 

located 
(joint) 

at 2' (joint), 3* ((̂ ), and 
from end of specimen 

none 

3 3; same as No. 2 none 

4 3: same as No. 2 none 

5 3: same as No. 2 3; top surface of concrete and top corrugation 
of decking at midspan and bottom corrugation of 
decking Immediately north of midspan 

6 3; same as No. 2 3: same as No. 5 

7 3: same as No. 2 none 

8 1: located at Ç only none 

9 1: located at ̂  only 3: top surface of concrete and bottom corruga­
tion of decking at midspan and top corrugation 
of decking Immediately south of midspan 

10 1: located at % only 3: same as No. 9 

11 3: located 
3' - 10' 

at 2' - 3", 3' (%), and 
' from end of specimen 

3: same as No. 5 

12 3: same as No. 11 3: same as No. 5 
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CHAPTER 4. TEST PROCEDUBES 

Test Procedure for Two-Way Slabs 

General remarks 

The gathering of the test data for all the two-way slab tests actually 

started at the time of casting when deflections, reaction transducer loads, 

and strains were measured on the steel decking due to the weight of con­

crete placed. Deflection, transducer, and strain readings on the steel 

decking were read every two or three days throughout curing of the slabs 

to obtain behavioral Information regarding curing effects. These deflec­

tions, reactions, and strains were also recorded prior to and following 

shore removal to ascertain the effects of shore removal. 

All five two-way slab tests were performed on the specimens as cast 

on their supports and were not moved prior to testing. Prior to the appli­

cation of any load on the slabs, the remaining items of instrumentation 

were Installed. These items Included strain gages on the concrete surface, 

deflection gages under the support frame, end slip instrumentation in the 

form of dial-gages and/or deflectometers, and, for Slab 1 only, corner 

tie-down assemblies. All instrumentation readings were taken before and 

after placement of load beams. The application of load began with the 

placement of the load beams under each hydraulic cylinder. Prior to load 

beam placement, the standard neoprene bridge bearing pads were placed on 

the concrete (to Insure a more uniform load distribution) and positioned 

at the four symmetrical concentrated load points indicated in Figure 10. 

Steel bearing plates were placed over the neoprene pads before load beam 

placement. After load beam placement, positioning of an additional bridge 

bearing pad and bearing plates (on top and underneath the pad) occurred 
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under each cylinder prior to application of the hydraulic loading. The 

weight of the pads, plates, and load beams amounted to 0.4 kips of applied 

load at each of the four concentrated load points. Upon completion of 

load beam placement, hydraulic loading of the slabs began as discussed 

later In this chapter. 

Throughout the loading sequence at each load Increment a complete 

set of Instrumentation readings were taken Including strains, reactions, 

deflections, observation and recording of crack patterns, crack widths 

(except Slab 1), progression of comer uplifts (except Slab 1), and gen­

eral description of slab behavior and progress of testing. The loading 

throughout testing generally consisted of Increments of 1 or 2 kips per 

load point. A time elapse of about two minutes occurred while each Incre­

ment of loading was applied followed by a time elapse of about 10 to 15 

minutes for reading of Instrumentation. All load levels subsequently 

mentioned include the 0.4 kips of weight at each of the four load points 

due to the loading beams, but not the dead weight of the slab Itself, ex­

cept as noted. 

After ultimate slab failure and completion of final instrumentation 

readings, the slabs were removed from their support frame by an overhead 

crane making use of cast-in-place lifting anchors. Upon placement of each 

slab on the laboratory floor, the slab was sawed into sections with a 

power concrete cutting saw. After sawing, each section was turned over 

and the steel decking removed to allow for observing and recording of crack 

patterns on the underside of each slab. Sawing the slabs also allowed the 

checking of the measured thickness of each slab. After recording the 

thicknesses along the saw cuts, the slabs were discarded. 
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The control cylinder and modulus of rupture specimen accompanying each 

slab test were tested according to ASTM specifications as given previously. 

These control specimens were tested on the same day as the corresponding 

slab test. A tabulation of the compressive and tensile concrete strengths 

was given in Table 3. 

Slab 1 

Prior to placement of the load beams for Slab 1, the corner reaction 

tie-down assemblies were positioned so that the corner force was applied 

at a location equal to the intersection of the underneath reactions In 

each direction. A slight uplift at all four comers was observed when the 

shoring was removed. The magnitude of this uplift varied from 1/16 Inches 

to 1/8 inches, but did not extend inward along the reactions more than a 

few inches. The installation of the corner tie-downs did not occur until 

just prior to load application and after the slight uplift had already 

occurred. The slight uplift may be considered Insignificant, depending on 

the actual construction procedures that would exist in a true building 

situation. 

Test loading of Slab 1 occurred on December 15, 1970, 15 days after 

casting. The first load Increment was 1.4 kips at each load point including 

the 0.4 kips of weight of the load beams, pads, and plates. Loading then 

progressed in increments of 2 kips at each load point with instrumentation 

readings taken at each load step. This 2-klp increment loading progressed 

uniformly until 13.4 kips per load point. At this point popping occurred 

«nd the lead suddenly dropped to 11.4 klpt>. At this poinc the mechanical 

deflection dials were removed and deflections were taken by use of a 
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Theodolite. The popping was attributed to sudden rupturing of some of the 

welded wire fabric. 

Upon attempting to reload, additional popping noise occurred accom­

panied by a further reduction in load to 10.6 kips. Reloading was again 

attempted. The load was uniformly increased from 10.6 to 13.4 kips per 

load point with instrumentation readings taken at each of these loading 

stages. Loading was further increased to 13.7 kips at which time addi­

tional popping noise occurred and load fell to 12.0 kips. An attempt to 

apply additional load resulted in a decrease of load to 10.7 kips. Instru­

mentation readings were taken at the 12.0 and 10.7 kips-load level even 

though complete failure was considered imminent. 

Additional jacking operations only resulted in numerous popping 

sounds with greatly increased deflections and a further reduction of the 

load. The test was then terminated and the load removed to permit a 

recording of final deflections and strains. The time of testing from zero 

load on the hydraulic cylinders until the test was terminated was approxi­

mately 4% hours. 

Slab 2 

Testing of Slab 2 occurred on June 7, 1971, 17 days after casting. 

No corner tie-down assemblies were employed on Slab 2. The first load 

level was 1.4 kips per load point. Then the loading was Increased in suc­

cessive increments of 2.0 kips per load point until 9.4 kips was reached. 

At this stage, loading was reduced to only that of the weight of the load 

beame stnA pl̂ tes (0.4 kips per peint) ar.d then relûadêu Lo 9.4 kips per 

point load and subsequently removed to 0.4 kips. This cycling of the load 

took place a total of 10 times between 0.4 kips and 9.4 kips per load point. 



www.manaraa.com

94 

During cycling, the loading was not increased in increments of 2.0 kips 

per load point, but was applied either as a full increment or a half 

increment to the 9.4 kip cycling load. 

After the 10 cycles, Slab 2 was once again loaded in increments of 

2 kips per load point after the first increment of 1.0 kip until a load 

of 9.4 kips was reached. At this point the deflection dials were removed 

and deflections were taken by use of a Theodolite. Then further loading 

occurred until 11.0 kips was reached. At this level a popping noise was 

heard, and the load fell to 10.7 kips per point. Loading was resumed 

until a load of 11.4 kips per load point was reached when two successive 

"pops" occurred accompanied by a drop in load to 10.4 kips and then to 

9.4 kips per point. Readings were taken and loading was resumed until 

reaching 10.4 kips when crack propagation occurred accompanied by a drop 

back to 9.4 kips per load point. 

Loading then continued to 11.4 kips and successively to 15.4 kips per 

point with instrumentation readings being taken at 11.4, 11.9, 12.4, 13.4, 

14.4, and 15.4 kips. At this stage, the slab had been severly distorted. 

An attempt to load above this point produced a maximum load of 15.5 kips 

per point, but then deflection was increasing quite rapidly and load could 

not be maintained at that level. Also enough distortion had been reached 

so as to allow the ends of the load beams to touch the slab. Testing was 

terminated at this point. The time of testing from zero load on the hy­

draulic cylinders until the test was terminated was approximately 12 hours. 

Slab 3 

Testing of Slab 3 occurred on August 2, 1971, 17 days after casting. 
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No corner tie-down assemblies were used on Slab 3. The first load level 

was 1.4 kips per load point. Then loading was increased in successive in­

crements of 2.0, 2.0, and 1.0 kips per load point with all instrumentation 

readings being taken at each increment until 6.4 kips per load point was 

reached. At this stage, loading was reduced to only that of the weight 

of the load beams and plates (0.4 kips per point) and then reloaded to 

the 6.4 kips-per-point load and subsequently removed to 0.4 kips per point. 

This cycling of the load took place a total of 10 times between 0.4 kips 

and 6.4 kips per load point. During cycling, the loading was not increased 

in increments of 2.0 kips per load point, but was applied either as a full 

increment or a half increment to the 6.4-kip cycling load. 

After the 10 cycles, the slab was loaded in successive increments of 

3.0, 2.0, and 2.0 kips per load point until a load of 8.2 kips was reached. 

At this level two small popping sounds were heard accompanied by a reduc­

tion in load to 7.9 kips per load point. All instrumentation readings 

were taken at 7.9 kips per point and loading was resumed to 8.4 kips per 

load point. At this point the deflection dials were removed and a Theodo­

lite was used. During the recording of the instrumentation readings, a 

popping noise was heard and load reduced only slightly. The slab was re­

loaded to the 8.4 kips level and instrumentation readings were retaken. 

Loading was then increased to 8.8 kips per load point when two successive 

loud pops occurred accompanied by a drop to 7.7 kips per point. All read­

ings were taken at this point. Reloading took place until 8.4 kips per 

point was reached when two more successive loud pops occurred while the 

load was being held for recording of instrumentation readings. Load fell 

at this point to 5.5 kips. Attempting to reload resulted in another loud 
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pop and subsequent drop in load to 4.5 kips per point. Further reloading 

was attempted; however, the slab was unable to sustain a load above 5.2 

kips per point. Testing was terminated at this point. The total time of 

testing for Slab 3 was approximately 10 hours. 

Slab 4 

Testing of Slab 4 occurred on October 30, 1971, 16 days after casting. 

No corner tie-down assemblies were used on Slab 4. After placement of the 

load beam and plates, the applied load was increased in successive incre­

ments to loads of 1.4, 2.4, 3.4, 5.4, 6.4, 7.4, 8.4, and 9.4 kips per load 

point. Instrumentation readings were taken at each of these increments. 

After the 9.4 kips level, loading was reduced to only that of the weight 

of the load beams and plates (0.4 kips per point) and then reloaded to 

the 9.4-kip level and subsequently removed to 0.4 kips per point. This 

cycling of the load between 0.4 and 9.4 kips took place a total of ten 

times. During cycling, the loading was continuous up to the 9.4-kip level, 

except for the first unloading and reloading when readings were taken 

with the load held at 5.4 kips per load point. 

After the ten cycles, the slab was reloaded in successive increments 

to failure. During the first phase of this reloading, a total of 1.4 kips 

per load point was applied, followed by six increments of 2.0 kips per 

point to a level of 13.4 kips. During this final loading run to ultimate, 

the mechanical deflection gages were removed after the 9.4 kips readings 

and a Theodolite was used to measure deflections for the remaining load 

stâgcs. Upon lûâùliig ûo 14.4 kips, two fairly loud pops occurred. While 

this 14.4-kip load was being maintained to take instrumentation readings. 
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a loud "bang" occurred accompanied by a falling of applied load to 6.2 

kips per load point. An attempt to reload resulted in a load of 6.6 kips 

per load point when more popping occurred and the load fell to 5.7 kips. 

Further loading resulted In more popping with the load falling to 5.2 

kips. Testing terminated when the load had fallen to 4.6 kips per load 

point. The total time of testing for Slab 4 was approximately 11% hours. 

Slab 5 

Testing of Slab 5 occurred on March 16, 1972, 17 days after casting. 

No comer tie-downs were used on Slab 5. After placement of the load 

beams and plates, the applied load was Increased in successive 1.0 kip in­

crements frmn 1.4 to 5.4 kips per load point. At this stage, loading was 

then reduced to only that of the weight of the load beams and plates 

(0.4 kips per point), after which the slab was reloaded to the 5.4 kip-

level. The jack load was removed again to 0.4 kips per point to complete 

the second cycle. This cycling of the load between 0.4 kips and 5.4 kips 

per load point took place a total of 10 times. 

During cycling, the load was applied continuously up to the 5.4 kips 

level with instrumentation readings taken only at 0.4 and 5.4 kips per load 

point. After ten cycles. Slab 5 was loaded in successive increments to 

failure. The first Increment of this reloading was 1.4 kips per load 

point. At this point the load was left on the slab for approximately 40 

minutes with Instrumentation readings taken at the beginning and end of 

this period to give an indication of short-time creep under load. The next 

âUCCcââlVc laêfêmêûLâ uirùuguL Lue loâù level to 6.4, 7.4, 8.4, and 9.4 kips 

per point. The mechanical deflection gages were removed after the 8.4 kips 

readings and a Theodolite was used for the remaining load levels. Just 
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prior to reaching 9.4 kips, a fairly loud popping noise was heard at 8.7 

kips. Instrumentation readings were not taken at this point, but loading 

continued until the increment was completed at 9.4 kips. In the midst of 

securing readings, while the load was maintained at 9.4 kips, another pop 

was heard accompanied by a drop in load to 8.7 kips per load point. In­

strumentation readings were taken at this stage. Continued attempts to 

apply load resulted in a falling off of load with a large increase in top 

surface cracking. Testing was teminated at an applied load of approxi­

mately 6.5 kips. Load was then removed and final zero readings were taken. 

The total time of testing for Slab 5 was approximately 9% hours. 

Slab Element Specimens 

All slab element specimens were tested on simple span supports, con­

sisting of a pinned reaction at one end and a roller reaction at the other, 

each with a 2-inch wide bearing plate between support and specimen. All 

longitudinal specimens except Numbers 9, 11, 17, 23, 24, 37, and 38 (see 

Table 9) were subjected to a symmetrical loading of two concentrated line 

loads as depicted in Figure 4. The excepted specimens so indicated were 

subjected to a single concentrated line load applied at the center of the 

length of the specimen. Neoprene bearing pads 5" wide by thick by the 

specimen width, b̂ , were applied on the concrete along the lines of load 

application to ensure a more uniform line load distribution. Steel bearing 

plates 5" wide by thick were placed between the neoprene pads and the 

transverse load beams. 

After the slab element specimens had been supported and before the 

placement of the load beams, deflection dials were positioned, strain gages 
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(when employed) were hooked to strain recorders, Whittemore tabs (when 

employed) were attached, and end-slip dial gages (when employed) were 

mounted. In the case of those specimens containing strain gages, those 

gages located on the steel decking were mounted prior to casting, whereas 

those gages on the concrete were mounted approximately two or three days 

prior to testing. 

Prior to testing or immediately following testing, the actual widths 

and depths of the slab elements were measured at various locations. In 

addition to the Instrumentation readings taken for each test, the cracking 

characteristics and the mode of failure was observed and recorded. All 

slab element specimens were loaded continuously in loading increments from 

zero load (plus weight of load beams) to ultimate failure. No cycling of 

load occurred for the slab elements in this investigation. However, re­

peated loading of slab element specimens was previously done prior to this 

investigation (23). 

Loading increments for the slab element specimens varied depending on 

the expected ultimate load. Generally, the Increments used for the longi­

tudinal specimens were 1.0 or 0.5 kips with instrumentation readings taken 

at each load level. In some cases, load increments were larger at the 

start of the test and decreased by about one-half after about one-half of 

the expected ultimate load was reached. The time elapsed for loading of 

each specimen was about one minute per increment and, for instrumented 

specimens, the time elapsed for reading of instrumentation was only long 

enough to take the readings, that being about one minute or less. 

The control cylinders and, when made, the modulus of rupture specimens 

accompanying each slab element test were tested within a period of one day 
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of the corresponding slab element test. Most control specimens were 

tested the same day as the corresponding slab element test. A tabulation 

of the compressive and tensile concrete strengths was given in Table 3. 
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CHAPTER 5. TEST RESULTS AND ANALYSIS OF 

DATA FOR FULL-SCALE TWO-WAY SLABS 

General Remarks 

The five two-way full-scale slab tests conducted in this investigation 

were all of the same basic sizes and were all subjected to the same type 

of loading as described previously. However, several important variables 

existed which influenced the results. These variables included the fol­

lowing: 

1. type of steel decking employed as primary reinforcement and its 

corresponding cross-sectional area; 

2. amount (size and cross-sectional area) of supplementary rein­

forcing, both parallel and transverse to the steel deck corruga­

tions ; 

3. yield strengths of both primary and supplementary reinforcing; 

4. corner restraints; 

5. average out-to-out thickness and depth of concrete over top cor­

rugation of steel decking; and 

6. concrete strength at time of testing. 

Variables other than those listed were considered as minimal. The differ­

ence in the concrete strength was utilized in the analysis of the data; 

but since all slabs were constructed with the same basic mix proportions 

and were tested within a two-day age span, the concrete variation was small. 

A complete summary of the above-mentioned variables together with the 

ultimate load sustained by each slab is given in Table 13. Another impor­

tant variable affecting the slab test results is the amount of the cycling 
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Table 13. Summary of important slab variables and ultimate and cycling 
loads for each slab test 

Slab 1 

Applied Load 

Ultimate load, P -kips/load point 
Cycling load - kips/load point 

Thickness and Supports 

Average out-to-out thickness, inches 
Average depth of concrete over top corrugation, 
inches 

Corner support condition 

Steel Deck Reinforcement 

Type of steel decking 
Cross section of deck shown in Figure 
Cross-sectional area, Agj - in.̂ /ft 
Yield point or strength, - ksi 

Supplementary Reinforcing 
(welded wire fabric, WWF; or T-wires) 

Type of WWF 
Position of WWF 
Area of WWF parallel to deck corrugations, 
A - in.2/ft 
*1 

Area of WWF or T-wire transverse to deck 
corrugations, A - in.̂ /ft 

®2 

Yield strength ((? 0.005 strain), ksi 

Concrete 

13.7 
none 

4.83 
3.28 

restrained 

I 
II 
0.625 
42.2 

6 X 6 X 6/6 
on decking 
0.057 

0.057 

79.0 

Average compressive strength, ksi 4160 
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Slab 2 Slab 3 Slab 4 Slab 5 

15.5 
9.4 

8.8 
6.4 

14.4 
9.4 

9.4 
5.4 

4.62 
3.07 

4.63 
3.08 

4.68 
3.37 

5.44 
2.44 

free free free free 

I I G 0 
11 11 12 13 
0.625 0.625 0.376 0.575 
42.2 42.2 101.6 49.4 

6 X 12 X 0/4 none T-wires 6 x 6 X 10/10 
on decking attached to decking one inch from top of slab 

0.034 none none 0.0282 

0.144 none 0.150 0.0282 

82.6 (#0 gage) none 92.1 119.4 
84.6 (#4 gage) 

3538 3951 3835 4300 
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load to which each slab, except the first, was subjected. The amount of 

the cycling load is contained in Table 13. When cycling occurred, how­

ever, all slabs (except Slab 1) were subjected to the same number of 

cycles, that being 10. 

Note in Table 13 that Slabs 2 and 4, with the greater amount of addi­

tional supplementary reinforcing transverse to the corrugations, sustained 

the greater ultimate loads. This result is as expected since the addi­

tional reinforcing transverse to the corrugations and below the neutral 

axis allows a better distribution of the positive (compression on top 

fibers) moments transverse to the deck corrugations in the critical areas 

in the central region of the slab. Thus, Slab 3, which had no supplemen­

tary reinforcing transverse to the corrugations, sustained the lowest 

ultimate load. 

The ultimate load of Slab 1 was considered as higher than what it 

would have been if subjected to the same conditions as Slabs 2 and 3. 

That is Slab 1 was not cycled 10 times, thus allowing a higher ultimate 

load to be applied. In addition. Slab 1 had its corners restrained from 

uplift by corner tie-downs which were not present on the other slabs. 

The presence of the corner restraints provided an increased stiffness to 

Slab 1. 

A direct comparison of Slabs 1 and 3 to determine the percentage in­

crease of the no-cycling and corner restraint effects is modified by 

another variable, that being the amount of supplementary reinforcing in 

these two slabs. As noted in Table 13, Slab 1 had the 6 X 6 X 6/6 WWF as 

supplementary reinforcing, whereas Slab 3 had no supplementary steel. The 

presence of the supplementary WWF in Slab 5 was not considered as effective 
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in contributing to the distribution of the bending moments transverse 

to the corrugations as the supplementary reinforcing of Slabs 1, 2, and 4. 

This ineffectiveness was due to the depth location of the WHF in Slab 5. 

The vertical location of the WHF was not below the neutral axis to suffi­

ciently aid in distributing the positive moments in the central region 

of the slab. 

The thickness of Slabs 1-4 was nominally set at 4% inches; however, 

the deflection of the steel decking caused a greater thickness to occur. 

The thickness of Slab 5 was set at slightly less than 5% inches and the 

increased stiffness of the 3-inch-deep steel decking provided very little 

Increase in thickness to occur due to deck deflection. The actual thick­

ness of each slab was determined at each location where a mechanical de­

flection gage was positioned. The deflection reading together with the 

difference in elevations measured by a surveyor's Theodolite gave the 

actual slab thickness at each location. 

The actual thicknesses of the slabs were also determined after each 

slab had been sawed into strips. These actual thicknesses were determined 

by simply measuring the thickness at one-foot intervals along the saw-cut 

edges and external edges of the slabs. The two means of measuring the 

thicknesses checked very closely. The average thickness shown in Table 13 

for each slab is an average of interior and exterior thicknesses. This 

average thickness was used in the general analyses involving orthotropic 

plate theory, yield-line ultimate strength theory, and shear-bond regres­

sion analysis. However, for the reduction of the strain data Into a cor­

responding bending moment at each particular location, the slab thickness 

as measured at that location was used to determine the experimental force 
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distributions. 

In observing the ultimate load in Table 13, it is important to note 

the type of failure that occurred for the five slab tests. None of the 

five slabs tested failed by extensive yielding of the steel-deck rein­

forcement. However, the steel deck did yield in some local areas in the 

central regions or around the concentrated load points. None of the slabs 

failed by a concrete compressive type of failure. In addition, no punching 

shear failure occurred, although there were some signs of punching failure 

near the end of some of the tests. All five slabs failed ultimately by a 

shear-bond type of failure. That is, slippage parallel to the deck cor­

rugations between the steel decking and the concrete occurred over the 

central regions of each slab. Details of this end slippage are presented 

later in this chapter along with the behavioral results of failure progres­

sion, observed crack propagation, load-deflection characteristics, strain 

distributions, and support reaction distribution. 

Behavioral Characteristics During 

Curing and Shore Removal 

As indicated in Chapter 3, vertical slab deflections and strain mea­

surements were taken during the time of the concrete curing prior to ap­

plied load testing. These measurements commenced at the time of casting 

and extended for about 15 days until the day of ultimate testing, including 

measurements before and after shore removal. All deflections and steel-

deck strains indicated in Figures 23-27 for the five slabs were recorded 

periodically during the curing period. Concrete strains were not recorded 

since these strain gages were not applied until near the time of testing. 
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Even though the deflections and steel strains were measured and recorded 

at all the instrumented locations, only a very brief description of 

these results is presented. These results give an indication of each 

slab's behavior during the curing and shore removal stages. 

The deflection behavior of the five slabs during curing and shore re­

moval stages is given in Figure 31 for four key locations. These four 

point locations are the following: 

1. centerpoint of slabs, 

2. center between the two western-most load points, 

3. center between the two southern-most load points, and 

4. at a location near the southwest load point. 

The plotted values of deflections for each of these points is shown in 

Figure 31. The exact location of each of the points plotted is noted. 

The left-hand ordinate of zero days for each slab represents the de­

flection of the deck at that location due to weight of the wet concrete. 

This initial value of deflection for Slab 1 is misleading in that the 

shoring was not as strongly supported allowing more deflection of two 

of the four points away from the center point shore post support location. 

The other four slabs show a more realistic initial deflection. The initial 

deflection near the north-south centerline shoring was, of course, less 

for Slabs 2-5. 

The deflection of the slabs during curing prior to shore removal was 

very small with the shoring carrying a large portion of the slab dead 

weight. Thus, not much deflection due to creep occurred prior to shore 

removal. 
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SCALE: 1"=5 

NOTE: SYMBOLS FOLLOWED BY 1 ARE FOR 
SLAB! LOCATIONS ONLY 

SHORING 
-V-0-Ô 

ë 
UJ 

H-
tu UJ 

u. 

to CO 

SLAB ' 3 SLAB* 1 SLAB #2 

10 15 0 0 5 
TIME - deys 

Figure 31. Deflection behavior of full-scale slabs during curing and 
shore removal 
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X-DIMENSION LOCATIONS 

SLAB - 1 
O - 1- 89.5" 
• - 1-59.75" 
A - 1-89.75" 
^- 1-65.94" 

SLAB - 2 
O -75.0" 
• - 81.0" 
A - 98.7" 
V - 98.7" 

SLAB -3 
O-75.0" 
• - 81.0" 
A-98.7" 
Vr98.7" 

SLAB-4 
O- 74.5" 
• - 79.25" 
A - 102.25" 
V. 102.25" 

SLAB - 5 
O-69.75" 
• -75.95" 
A-94.0" 
9-94.0" 

SLAB #4 
TIME - days 

SLAB'5 

Figure 31. Continued 
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The deflections due to shore removal are represented as a vertical 

jump in deflection at the time of shore removal as indicated on Figure 31 

for each slab. The amount of shore removal deflection for Slab 1 was 

partially negated by the shore deflection during casting. However, Slabs 

2-5 demonstrated significant jump in deflection of around 0.05 inches at 

shore removal. The shore removal deflection is, of course, due to the 

weight of the slab that was on the shore being transferred to the compo­

site, reinforced floor slab system. This slab weight on the shore can be 

approximated by considering the center reaction from a continuous two-span 

beam strip parallel to the deck corrugations. 

A significant aspect of Figure 31 is the amount of creep deflection 

which occurred during the time after shore removal. As can be seen, the 

deflection for the days after shore removal is higher than the amount of 

instantaneous shore removal deflection. This shows that a significant 

amount of creep may occur for such systems. However, these measurements 

are insufficient to reach any general conclusions regarding creep effects 

for the design of steel-deck reinforced slabs. 

Failure Progression and Observed Crack Patterns 

An indication of the behavior of the two-way slabs subjected to a 

symmetrical pattern of four concentrated loads can be seen by looking at 

the sequence of events leading to failure and to the progression of crack­

ing along the edges and across the surface of the slabs. Table 14 contains 

a detailed compilation of the sequence of events leading to failure at each 

imporcanc stage in loading tor each slab. The tabulated loads, deflections, 

and strains in Table 14 are for applied jack load plus weight of load beams 
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Table 14. Summary of occurrences during loading to failure of each two-
way slab test 

Event 

Slab 1 

Loaded uniformly In Increments of loading 

While loading from 9.4 to 11.4 kips, four top surface cracks occurred -
one diagonally across each of the four corners; see Crack Numbers 1, 2, 
3 and 4 In Figure 32; these cracks also occurred on east and west edges. 
See Figure 33, Numbers 1 and 2 on each side. 

Diagonal corner cracks opened; held load at 13.4 for about 5 minutes 
while Instrumentation readings taken; at this time a pop occurred (attri­
buted to possible sudden rupture of a section of WW% load fell to 11.4 
kips; deflection dials were removed. 

Took deflection readings with Theodolite and took other instrumentation 
readings; then reloaded to 12.6 kips. 

Pop of WWF occurred accompanied by end slip of about 1/16 inch on west 
side along central region between load points; load fell to 11.2 kips, 
Crack Numbers 5 and 6 appeared across surface - see Figure 32. Readings 
taken at 11.2 kips, then reloaded to 13.4 kips. 

Readings taken at 13.4 kips; top surface Crack Numbers 7, 8, 9, 10, 11, 
12, and 13 occurred - See Figure 32. Additional end slip occurred; 
loaded to 13.7 kips. 

Loud pop occurred at 13.7 kips; load fell to 12.1 kips with readings 
taken at 12.0 kips. Top surface Crack Number 14 occurred - See Figure 32. 
Then reloaded. 

Three pops in succession occurred accompanied by additional end slip on 
east side and a drop in load to 11.2 kips; reloaded to 11.7 kips with 4 
successive pops occurring; Crack Numbers 15, 16, 17, 18, 19, 20, 21, 22, 
and 23 occurred in Figure 32; load fell to 10.7 kips. Attempt to reload 
resulted in 6 more pops; readings were taken at 10.7 kips; north load beam 
contacted concrete surface due to slab deflection; test terminated. 

Test terminated; final permanent set readings taken. 

Strains were measured on cop corrugacion tor Blab I; strains tor all 
other slabs were measured on bottom configurations. Extrapolated strains 
for the bottom corrugation of Slab 1 are shown in parenthesis. 
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Centerpoiat Centerpoiat steel strain 
Load - Deflection - parallel to corrugations -

kips/load point inches microinches (+ = tension) 

0.0 to 9.4 0.0 to 0.421 0 to 295* (0 to 594) 

9.4 to 11.4 0.421 to 0.695 295 to 407 (594 to 978) 

13.4 0.945 749 (1387) 

11.4 1.397 696 (1282) 

12.6 to 11.2 1.517 672 (1226) 

13.4 2.817 462 (974) 

13.7 to 12.1 3.197 94 (441) 

12.9 to 11.2 3.817 24 (437) 
to 10.7 

0.0  2.917 -563 (---) 
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Table 14. Continued 

Event 

Slab 2 

Loaded uniformly In Increments of loading; at 7.4 kips, first crack on west 
edge of Slab 2 located 4' - 3" from north edge - see Crack Number 1 In 
Figure 33. Also Cracks 1 and 2 on east edge in Figure 33 occurred. 

No readings taken; Crack Number 2 on vest edge of Figure 33 occurred. 
Cracks 1 and 2 in Figure 32 started progressing on top surface from pre­
vious edge cracking of Crack Numbers 1 in Figure 33. 

Four more diagonal edge cracks occurred on east edge shown as Numbers 3, 
4, 5, and 6 in Figure 33. Also Cracks 3, 4, and 5 developed on west edge. 
End of first cycle of loading - started unloading, took readings at 5.4 
and 0.4 kips. 

Crack Number 6 on west edge in Figure 33 developed; unloaded and took 
readings at 5.4 and 0.4 kips. 

Crack Numbers 7 and 8 on east edge occurred; during unloading to 5.4 kips. 
Crack Number 7 on west edge was discovered; took readings at 5.4 and 0.4 
kips. 

Cracking same as before; slab had gradually lifted off north and south 
supports so that at this stage only about 15" of length of pinned reaction 
was providing bearing. Unloaded, took readings at 5.4 and 0.4 kips. 
Crack 8 developed on vest edge as shown in Figure 33. 

No apparent changes occurred. 

Distribution of bearing length of support appeared to be about 15 inches 
along center of north support and 26" along center of south support. 
Crack 2 on top surface in Figure 32 showed a vertical shearing separa­
tion from one side to the other side. This continued as loading in­
creased. 

No changes noted. 

Top surface Crack Number 3 in Figure 32 appewed. Unlike other top sur­
face cracks, this one did not originate from̂ a previous edge crack. 

N̂umber after dash indicates loading cycle; 11 indicates final 
loading cycle to ultimate. 
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Centerpolnt Centerpolnt steel strain 
Load - Deflection - parallel to corrugations -

kips/load point Inches microlnches (+ = tension) 

0.0 to 7.4 0.0 to 0.451 0 to 523 

8.4 

9.4 - 1 0.711 808 

9.4 - 2 

9.4 - 3 

0.746 

0.766 

842 

863 

9.4 - 4 0.797 873 

9.4 - 5 0.826 895 

9.4-6 0.838 906 

9.4 - 7 0.846 916 

9.4 - 8 0.854 916 
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fable 14, Continued 

Event 

Slab 2 - continued 

Crack 4 on top surface appeared as shown in Figure 32. 

No changes noted. 

Final loading to ultimate; deflection dials removed, deflections taken 
by Theodolite. 

During attempted loading to next increment of 11.4 kips, a pop occurred 
at 11.0 kips with loss in load to 10.7 kips; resulted in small end slip 
on wet edge; Cracks 5 and 6 appeared on top surface as shown in Figure 
32. Only end slip readings taken. 

Upon reaching 11.4 level, two successive pops occurred, load fell to 10.4 
and then to 9.6 kips; sounded as if WMF or some kind of failure occurred 
in southwest quadrant; more end slip occurred. Crack 9 on west edge 
developed; surface Crack Numbers 7, 8, 9, 10, 11, and 12 shown in Figure 
32 appeared; readings taken at 9.4 kips and not at 11.4. 

Attempt to load to next increment resulted in drop in load back to 9.4 
kips as surface Cracks 13, 14, and 15 developed. Readings taken at 
9.4 kips. 

Surface Cracks 16, 17, 18, and 19 developed. See Figure 32. East edge 
Crack Number 9 also appeared - See Figure 33. 

Surface Cracks 20, 21, 22, and 23 appeared along with east edge Crack 10 
and west edge Crack 10. 

East edge Crack 11 appeared; west edge Crack 11 appeared. See Figure 33. 
Top surface Cracks 24, 25, and 26 appeared. See Figure 32. 

Top surface Cracks 27, 28, 29 appeared and east edge Crack 12 developed. 
Approximately 1/8 inch of end slip had been developed on both east and 
west edges at this stage. 

Top surface Crack 30 appeared. 

About k inch of end slip existed on both sides; slab greatly distorted; 
difficult to maintain load; some slight signs of peripheral cracks near 
load points as top surface Cracks 31, 32, 33, 34, 35, and 36 appeared. 
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Centerpoiat Centerpoiat steel strain 
Load - Deflection - parallel to corrugations -

kips/load point inches microinches (+ = tension) 

9.4 - 9 0.871 924 

9.4 - 10 0.873 924 

9.4 - 11̂  0.876 926 

11.0 - 11 --- ---

11.4 - 11 to 1.230 772 
9.4 - 11 

10.5 to 9.4 - 11 1.510 739 

11.4 - 11 2.310 877 

11.9 - 11 2.550 900 

12.4 - 11 2.710 910 

13.4 - 11 3.110 932 

14.4 - 11 3.750 907 

15.4 - 11 4.750 886 
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Table 14. Continued 

Event 

Slab 2 - continued 

Difficult to maintain load as load was gradually falling; deflections 
increasing even more until load beams touched top surface of concrete; 
no readings were able to be taken at this stage; surface Cracks 38, 39, 
and 40 occurred after ultimate load. Loading was removed. 

Permanent distortion readings taken. 

After placement of additional plates for clearance under load beams, slab 
was reloaded; as load reached 12.9 kips, a succession of six pops occur­
red accompanied by a dropping in load. Readings were not taken and 
testing terminated. 

Slab 3 

Loaded uniformly in increments of loading; at 5.4 kips, 3 hairline diag­
onal shear cracks developed along east and west edges - see Crack Numbers 
1 and 2 on west edge and Crack 1 on east edge in Figure 33. 

Two small popping noises heard; Crack 2 appeared on east edge - See Figure 
33; Cracks 1-4 appeared on top surface as propagated from previous edge 
cracks - See Figure 32. End of first cycle; started unloading to 3.4 
when Crack 5 on top surface had developed; then loaded to 0.4 kips. 

Upon reloading on second cycle. Crack 3 on east and west edges in Figure 
33 developed. 

Crack 6 on top surface in Figure 32 appeared. 

No apparent changes. 

At start of fourth cycle. Crack 7 on top surface in Figure 32 appeared. 

At start of fifth cycle. Crack 8 on top surface appeared. 

Completion of cycling loads with no more apparent changes. 

Loaded uniformly in increments on final run to ultimate. Attempt to load 
to 6.4 kips could not be achieved, goc co 3.2 when cwo pops occurred along 
east edge, load fell to 7.9 kips, small end slip (0.004 inches) occurred 
on east side. 
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Centerpolnt Ceaterpolnt steel strain 
Load - Deflection - parallel to corrugations -

kips/load point inches microinches (+ = tension) 

15.5 - 11 

0.4 3.850 -114 

0.4 to failure -12 — 

0.0 to 5.4 0.0 to 0.258 0 to 320 

6.4 - r 0.403 525 

3.4 - 2 0.250 335 

6.4 

6.4 

0.4 

0.4 

6.4 
6.4 

2 

3 

4 

5 

5 to 
10 

0.437 

0.448 

0.107 

0.113 

0.460 to 0.483 

563 

600 

180 

185 

600 to 626 

0.4 - 11 to 0.124 to 0.570 200 to 745 
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Table 14. Continued 

Event 

Slab 3 - continued 

Crack 4 on the east edge In Figure 33 occurred; top surface Cracks 9 and 
10 in Figure 32 occurred; deflection dials removed after readings taken. 

While taking readings, a pop noise was heard towards southwest corner 
resulting in end slip near southwest load point. Surface Cracks 11, 12, 
and 13 in Figure 32 occurred. Slab at this stage had completely lifted 
(minimum of about \ inch) off entire north and south support reactions for 
a distance inward of approximately four feet on each side: Thus, only the 
central eight feet of slab were carrying the load at this stage. After pop 
occurred load fell slightly; slab was reloaded to 8.4 where a complete 
set of readings was taken as load fell gradually to 8.2 kips, then re­
loaded to 8.4 again where another complete set of readings was taken. 
Deflections and strains on right indicate change from second 8.4 to third 
8.4 kip readings. 

Upon continued loading the load reached 8.8 kips when a loud pop occurred 
and load fell to 7.9 kips followed by another loud pop and load fell to 
7.7 kips when readings were taken (as shown to right). Significant 
visual end slip now occurred measuring about 0.02 inches. 

Reloading occurred, reached 8.4 kips level again, started to take readings 
when consecutive pops resulted in a load falling to 7.7, 7.0, and 5.7 kips 
each. Cracks 14, 15, and 16 on Figure 32 occurred. The south section of 
the slab suddenly came down on its supports with a loud bang at the 7.0-
kip level. Attempting to reload from 5.5 kips resulted in Cracks 17, 18, 
19, 20, and 21 at 6.3 kips with a loud bang resulting in the north portion 
of slab causing it to rest on its supports. Further attempts to reload 
from 4.5 kips resulted in some Increase in load with increased end slip 
on both east and west edges. Continued loading resulted in more end slip 
and a falling of load. Test was terminated. 

Permanent set readings. 

Slab 4 

Loaded uniformly in increments to 5.4 kips when several small cracking 
sounds were heard, possibly due to chemical bond breaking between deck 
and concrete. Corner uplift had occurred so that slab was free of sup­
ports for a distance of four feet each direction from each corner. 
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.Çenterpoint Ceaterpoint steel strain 
Load - Deflection - parallel to corrugations -

kips/load point inches microinches (+ = tension) 

7.9 - 11̂  0.704 930 

8.4 - 11 0.920 to 1.020 1104 to 1234 

8.8 to 11 to 1.120 1200 
7.7 to 11 

8.4 - 11 1.420 not taken 

0.0 1.900 not taken 

0.0 to 5.4 0.0 to 0.313 0 to 487 
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Table 14. Continued 

Event 

Slab 4 - continued 

First edge cracking occurred with Cracks 1, 2, and 3 developed on both 
east and west edges. See Figure 33. Note cracking fairly symmetrical. 

Edge Cracks 4 and 5 on both east and west sides developed. See Figure 
33. Several small distressing sounds heard during loading increment. 

Some distressing sounds as loading increased, edge Crack 6 in Figure 33 
developed. 

End of first cycle of loading. Edge Crack 6 on west edge and edge Crack 
7 on east edge in Figure 33 developed. Based on uniaxial stress field 
the stress In bottom fiber of steel was about 46,800 psl. The deflection 
at this stage at center was approximately 2\ times the L/360 deflection 
criteria. After readings taken at 9.4, then unloading began. 

Top surface Cracks 1, 2, and 3 in Figure 32 appeared upon unloading in 
first cycle. 

No apparent changes in crack patterns occurred during all cycles of 
loading except for some changes in measured crack widths and part of 
Crack 4 (one inch long) of Figure 32 appeared at tenth cycle. 

No changes In crack patterns; deflections taken by Theodolite. 

Crack 5 in Figure 32 appeared. Edge Cracks 7, 8 and 9 on west edge in 
Figure 33 appeared. 

Two fairly loud pops occurred upon loading to 14.4 kips surface Cracks 5, 
6, 7, 8, and 9 occurred. All readings taken except for completion of 
deflecMon readings, when, while taking these readings, a loud bang 
occurred which resulted in surface Cracks 10, 11, 12, 13, 14, 15 and 16 
in Figure 32. Loud bang resulted in considerable end slip on east edge 
of about % inch, but only about 0.02 Inches on west edge. T-wires were 
torn from decking as observed from underneath side of slab. The general 
locations of torn T-wireswere recorded. Load fell after the bang to 
6.2 kips. 

Readings taken at 6.2 kips after fall from 14.4; attempt to reload 
reached 6.6 kips with two pops occurring accompanied by a drop to 5.7 
kips with top surface Cracks 17 through 22 appearing. Further attempts 
to reload resulted in more popping and further drop in load. 
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Load -
kips/load point 

Centerpoint 
Deflection -

inches 

Centerpoint steel strain 
parallel to corrugations -
microinches (+ = tenstion) 

6.4 

7.4 

8.4 

9.4 

0.466 

0.639 

0.804 

0.950 

743 

1039 

1318 

1534 

5.4 - 1 0.731 1144 

9.4 - 2 to 0.995 to 1.094 1584 to 1668 
9.4 - 11 

11.4 - 11 1.334 2020 

13.4 - 11 1.634 2485 

14.4 - 11 not taken 2895 

6.2 -  11 2.074 1455 
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Table 14. Continued 

Event 

Slab 4 - continued 

Readings at test termination; top surface Cracks 23 and 24 appeared. 

Readings taken for permanent set in Slab 4. 

Slab 5 

Loaded uniformly in increments of loading to end of first cycle. Crack 
Numbers 1 and 2 on both east and west edges in Figure 33 occurred. The 
slab unloaded to 0.4 kips and reloaded. Loading and unloading continued 
10 times. 

Cracks 3 and 4 on the east edge in Figure 33 appeared. 

Cracks 3 and 4 on the west edge and Crack 5 on the east edge as shown in 
Figure 33 developed. 

Crack 6 on east edge in Figure 33 appeared and first crack on top surface 
in Figure 32 appeared. 

No apparent changes. 

Crack 1 on top surface elongated Inward about one inch. 

No apparent changes. 

Crack 7 on east edge in Figure 33 appeared. 

No noticeable changes. 

Crack 5 on west edge shown in Figure 33 developed. End of cycling. 
Starting from 0.4 kips, the final eleventh cycle was to failure. 

No apparent changes from 10 - 10 kips but load was held at this stage for 
31 minutes to determine short-time creep characteristics. 

No apparent changes after holding for 31 minutes except for slight in* 
creases in deflection and strain. 

Crack 8 on east edge and Crack 6 on west edge in Figure 33 appeared as well 
as top surface Cracks 2, 3, and 4 in Figure 32 developed from previous 
edge cracks. 
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Load -
kips/load point 

Centerpoint 
Deflection -

inches 

Centerpoint steel strain 
parallel to corrugations -
microinches (+ = tension) 

4.6 - 11 

0.4 

2.834 

not taken 

1184 

635 

0.0 to 5.4 - 1 0.0 to 0.282 0 to 479 

5.4 -2 0.300 499 

5.4 - 3 0.308 507 

5.4 - 4 0.312 516 

5.4 - 5 0.320 519 

5.4 - 6 0.323 525 

5.4 - 7 0.324 529 

5.4 - 8 0.327 531 

5.4 - 9 0.327 531 

5.4-10 0.330 539 

10 - 11 0.333 538 

10 - 11 0.343 549 

6.4 - 11 0.466 699 
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Table 14. Continued 

Event 

Slab 5 - continued 

Top surface Crack 5 in Figure 32 developed. 

Top surface Cracks 6, 7, 8, 9, and 10 shown in Figure 32 appeared as well 
as Crack 7 on west edge in Figure 33. Elevations taken with both dials 
and Theodolite at this level, then dials removed and remaining elevations 
taken with Theodolite. 

While loading to 9.4 kips some end slip was observed on both east and west 
sides at 8.8 kips, accompanied by a loud popping noise on southeast quad­
rant of slab. Upon reading 9.4 kips, load was held for about 2 minutes 
when continued pumping could not hold load at the 9.4 level; load fell to 
8.8 kips; most readings at the 9.4-kip level were actually taken at the 
8.8-kip level. The two deflections at right indicate both the 9.4 and 
8.8-kip levels. During those stages of loading, top surface Cracks 11 
through 23 in Figure 32 developed. As can be seen from cracks in Figure 
32, some signs of punching shear cracking developed around the northeast 
load point. 

Readings taken again at this level as load had fallen from the previous 
8.8 kips. As attempted loading continued beyond this stage, the load 
continued to fall and the test was terminated after load fell to 6.8 kips. 

Final permanent set readings taken. 
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Centerpoint Centerpoint steel strain 
Load - Deflection - parallel to corrugations -

kips/load point inches microinches (+ = tension) 

7.4 - 11 

8.4 - 11 

0.551 

0.800 

905 

1191 

9.4 - 11 to 
8.8 - 11 

1.240 to 1.480 1609 

1635 

254 

7.9 - 11 2.100 

0.0 1.360 
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at each load point and do not have any amount added for slab dead weight. 

Included in Table 14 with each event is the corresponding vertical 

deflection and steel deck strain at the center of the slab. The strains 

and deflections are included only for those loads at which these instru­

mentation readings were read. Additional strain information indicating 

the mav-fimim strain and its location and strain distribution behavior is 

given in a later section on strain behavior. The strains given are those 

recorded in the direction parallel to the steel-deck corrugations since 

this is the larger strain direction developed and is an indication of the 

one-way steel stress in the strong direction of the slab. The strain at 

the center of the slab was not necessarily the maximum strain, since the 

concentrated load points produced somewhat larger strains in the vicinity 

of the load points. 

The strain given in Table 14 is for the bottom corrugation of steel 

decking except for Slab 1 where the gage was located on the top corruga­

tion. Extrapolation of the strain, assuming linear strain across the 

section, to the bottom corrugation for Slab 1 was made by simply extending 

the distribution of the known concrete strain on top surface and the strain 

on top corrugation of steel decking using the actual measured thickness at 

that point. This extrapolated strain is shown in parenthesis for Slab 1 

in Table 14. 

In looking at the strains and deflections, a few interesting observa­

tions can be made. One important observation concerns the comparison of 

the uniaxial strain Lo câuâe ylêlulûg (I.e. Fy/Zg) compared tO the CCtÛ l 

strain of the center of the slab. The yield strain for Slabs 1, 2, and 3 

is 1435; for Slab 4, 3331; and for Slab 5, 1594 microinches per inch. As 
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can be seen. Slabs 1, 3, and 4 came fairly close to yielding at the center, 

whereas Slab 2 only reached 65 percent of the yield strain. 

The lower strain at the center of Slab 2 is significant since this 

slab had a much greater amount of supplementary reinforcing transverse to 

the deck corrugations. Thus, the additional reinforcing allowed a better 

distribution of forces to take place. The higher strains of Slab 4 were 

due to a different type decking. 

Slab 5 was the only one that did reach the yield strain, but this 

occurred after the ultimate load had been reached. This slab was also 

the only one that had an increase in strain after ultimate load. This 

increase can be explained by the fact that Slab 5 contained the 3-inch 

deck making the deck a greater percentage of the total thickness. Thus, 

after the loss of total composite action had occurred, the deck, with its 

greater capacity by Itself, then withstood more load and consequently 

had its steel fibers strained more immediately after ultimate load. 

Along with reduced strain at center for Slab 2, Slab 2 also could 

sustain a much greater deflection (4.75 inches) before failure. This again 

was due to the greater supplementary steel. On the other hand. Slab 3, with 

no supplementary steel, could not withstand near as much deflection (1.02 

inches) at ultimate as Slab 2 could. 

Contained in Table 14 are referrals to Figures 32 and 33 which show 

specified crack information. Figure 32 indicates the cracking that oc­

curred on the top surface of the five slab specimens, whereas Figure 33 indi-

edges of each slab. The crack numbers in each of these two figures indicate 

the order of occurrence of the cracks. 
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Accompanying Figures 32 and 33 are two tables giving the measured 

crack widths at certain stages of loading. Table 15 gives crack widths 

for the top surface cracking and Table 16 gives crack widths for the edge 

cracking. Slab 1 is omitted from Tables 15 and 16 since crack width mea­

surements were not taken on this slab. The crack widths were made with 

a six-power comparator with a least devision of 0.1 mm. For those mea­

surements given in inches, the measurement was made simply with an engi­

neer's scale. The inch measurements were used only for those cracks of 

considerable size. 

As can be seen from Tables 15 and 16, most cracks that developed were 

in the 0.1 mm range and some of these cracks remained small even after ulti­

mate loading. Those cracks with the greatest width at final measurement 

after testing signify the major failure cracks. Note that the major failure 

crack widths were much larger for Slab 2 than for the other slabs. This was 

attributed to the increased ductility of this slab due to the benefit of the 

better distribution of forces from the additional supplementary reinforcing 

steel. Thus, larger crack widths could occur before final failure. 

It is particularly important to note the type of edge cracking that 

took place. The major edge cracks were all diagonal in nature (roughly 

at a 45 degree angle) and propagated diagonally up and towards the nearest 

north or south edge. The development of the diagonal shear cracks propa­

gated from a corner of a top corrugation of the steel decking. As loading 

progressed these cracks proceeded to the top fibers of the slab and then 

pïûpôgâucu iawôrd along the top surface. The vidths cf the diagonal cracks 

were greatest at their starting point and diminished to about 0.1 mm at 

their uppermost point. The major failure cracks began to open up along the 
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Figure 32. Crack patterns on top surface of each slab test 
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SLAB 3 

Figure 3'A, Continued 
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SLAB 4 
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Figure 32, Continued 

NOTES: 

1. NUMBERS INDICATE APPROXI­
MATE ORDER OF CRACK OCCUR­
RENCE. SEE TABLE 14 FOR LOAD 
AT WHICH EACH CRACK 
OCCURRED. 

2. DIAGONAL CORNER CRACKS 
EXIST ONLY FOR SLAB 1 DUE TO 
PRESENCE OF CORNER TIE 
DOWNS. 

3. SEE TABLE 15 FOR APPROXIMATE 
CRACK WIDTHS AT EACH LOAD. 

4. THE L" LENGTHS SHOWN ARE 
AVERAGE MEASURED VALUES 
FOR THE CRACK MECHANISM 
OF EACH SLAB. 
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Figure 32. Crack patterns on east and west edges of each slab test 
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SLAB 4 

9 2 3 8 7 

4 2 3 6 

N 

SLABS 

6' - 0" 4' - 0" 

SCALE: 1"= 2' - 0" HORIZONTAL 

NOTES; 1. NUMBERS INDICATE APPROXIMATE ORDER OF CRACK OCCURRENCE. 
2. SEE TABLE 14 FOR LOAD AT WHICH PARTICULAR CRACK OCCURRED. 
3. SEE TABLE 16 FOR CRACK WIDTHS AT EACH LOAD. 

Figure 3 L Continued 
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Table 15. Measured crack widths of top surface cracking for slab specimens 
g 

Crack number and average widths (mm) 
Load 

1  2  3 4 5 6 7  8 9  1 0  (kips) Cycle 1  2  3 4 5 6 7  8 9  1 0  

Slab 2̂  

8.4̂  1 .1 .1 

9.4 1 .3 .1 

9.4 2 .4*® .2 

9.4 6 .3* 

9.4 8 .1 

9.4 9 .1 

11.4 to 9.4 11̂  .1 .1 .1 1.5* .1 .1 .1 

11.4 11 .2 

11.9 11 .2 

12.4 

13.4 

14.4 

15.4 

Final 2.0* 2.0* 2.0 .8 .5 .5 2.5* 1.8 .7* 3.0* 

See Figure 32 for crack number locations. 

Ân engineer's scale was used on only those cracks given in inches; 
otherwise all measurements are given in millimeters. 

Ĉrack widths are not given for Slab 1 since they were not measured. 

N̂o cracking was observed below first listed load for each slab. 

®An * indicates that there was a vertical (shear) separation of the 
crack as well as the horizontally measured value. 

B̂lank spaces after initial cracking merely indicate no crack mea­
surement obtained for that load level. 

Êleven indicates the final cycle to ultimate. 
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Table 15. Continued 

â b 
Crack number and average widths (mm) 

Load 
(kips) Cycle 11 12 13 14 15 16 17 18 19 20 

Slab 2° 

8.4 1 

9.4 1 

9.4 2 

9.4 6 

9.4 8 

9.4 9 

11.4 to 9.4 11® .1 .1 .1 .5 .1 

11.4 11 .3 .1 .1 .2 .2 

11.9 11 .4 .1 

12.4 11 

13.4 11 

14.4 11 

15.4 11 

Final 1.7 .2 .1 1.0* 3.0 .1 .2 .5 2.2 .1 



www.manaraa.com

Table 15. Continued 

â b 
Crack number and average widths (mm) 

Load Z 
(kips) Cycle 21 22 23 24 25 26 27 28 29 30 

Slab 2̂  

8.4 1 

9.4 1 

9.4 2 

9.4 6 

9.4 8 

9.4 9 

11.4 to 9.4 11® 

11.4 11 

11.9 11 1.1 .1 .1 

12.4 11 .1 .1 .1 

13.4 11 .7 .1 .2 .1 

14.4 11 0.2"* .2 .1 

15.4 11 .22" .1 

Final 2.5* 1.0* .1 .1 0.1 .22"* .3 .2* .1 .1 
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Table 15. Continued 

Load 
(kips) Cycle 

Crack number̂  and average widths (mm)'' 

31 32 33 34 35 36 37 38 39 40 

Slab 2 

8.4 

9.4 

9.4 

9.4 

9.4 

9.4 

11.4 to 9.4 

11.4 

11.9 

12.4 

13.4 

14.4 

15.4 

Final 

1 

1 

2 

6 

8 

9 

.2 .1 .1 ,2 .2 .1 

1.4 .3 .4 .3 .7 .4 0.5 2.0 0.3 0.2 
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Table 15. Continued 

Load Crack number̂  and average widths (mm)̂  

(kips) Cycle 1 2 3 4 5 6 7 8 9 

Slab 3 

6.4̂  1 .1 .1 .1 .1 

3.4 1 .1 

6.4 2 .1 .1 

0.4 3 .1 

6.4 3 .1 .1 .2 

0.4 4 .1 

0.4 5 .1 

6.4 5 .2 

6.4 8 .2 .1 .2 

5.4 11 .2 .2 .2 

7.9 11 .4 .1 .6 .2 .2 .3 

8.4 11 .1 .1 .8 .07" .2 .2 .2 .1 

Final .36"* .50"* .11"* .12"* .08"* 0.1" 0.1" .05" .50* 
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Table 15. Continued 

Crack number̂ and average widths (mm)̂  

(kips) Cycle ÏÔ ÏÏ Ï2 13 14 15 16 17 18 19 20 zT 

Slab 3 

6.4 1 

3.4 1 

6.4 1 

0.4 3 

6.4 3 

0.4 4 

0.4 5 

6.4 5 

6.4 8 

5.4 11 

7.9 11 

8.4 11 

Final 

1 . 2  

. 1  . 1  . 1  

.30"* 0.1" .06" .1 .1 .06" .2 .1"* .3 .2" .06" .04" 
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Table 15. Continued 

Crack number and average widths (mm) 
Load 
(kips) Cycle 1 2 3 4 5 6 7 8 9 10 11 12 

Slab 4 

5.4"̂  
(unloading) 

1 .1 .1 .1 

13.4 11 .1 

14.4 11 .2 .1 .1 .1 .2 

6.2 11 .5 .3 .2 .1 .7 .5 

5.7 11 

4.6 11 .1 .1 .1 .1 .5 .1 .3 .1 .2 .1 .7 .5 

Slab 5 

5.4̂  4 .1 

6.4 11 .1 .1 .1 

7.4 11 .1 

8.4 11 .1 .1 .1 .1 .1 

9.4 11 .1 .1 

Final .2 .2 .3 
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Table 15. Continued 

Crack number̂ and average widths (nnn)̂  
Load 
(kips) Cycle 13 14 15 16 17 18 19 20 21 22 23 24 

Slab 4 

5.4 1 

13.4 11 

14.4 11 

6.2 11 .5 .2 .2 .2 

5.7 11 .2 .1 .2 .2 .2 .1 

4.6 11 .5 .2 .2 .2 .2 .1 .2 .2 .2 .1 .2 .2 

Slab 5 

5.4 4 

6.4 11 

7.4 11 

8.4 11 

9.4 11 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 

Final .9 .4 1.2 .2 1.3 3.2 1.2 .9 
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Table 16. Measured crack widths of edge cracking for slab specimens 

West edge crack no.̂  and average crack widths 
(mm. except inches where noted) 

Load 
(kips) Cycle 1 2 3 4 5 6 

Slab 2̂  

7/ 1 0.4 0 0 0 0 0 

9.4 1 0.5 0.3 0.2 0.2 0.1 0 

9.4 3 0.5 0.3 
_e 

0.1 

9.4 4 0.5 0.3 0.1 

9.4 11̂  0.5 0.3 0.1 

11.4 to 9.4 11 0.5 0.3 0.1 

11.4 11 0.5 0.3 0.1 

11.9 11 0.5 0.3 0.1 

12.4 11 0.5 0.3 0.1 

13.4 11 0.5 0.3 0.1 

15.4 11 0.5 0.3 0.1 

Final 1.6 1.2 0.2 0.2 0.1 0.1 

*See Figure 33 for crack number locations. 

Ân engineer's scale was used on only those cracks given in inches; 
otherwise all measurements are given in millimeters. 

Ĉrack widths are not given for Slab 1, since they were not measured. 

'̂ No cracking was observed below first listed load for each slab. 

B̂lank spaces after Initial cracking merely indicate no crack mea­
surement obtained for that load level. 

Êleven indicates the final cycle to ultimate. 
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Table 16. Continued 

West edge crack no.̂  and average crack widths 
(mm. except inches where noted)̂  

Load 
(kips) Cycle 7 8 9 10 11 12 

Slab 2̂  

7.4'̂  1 0 0 0 0 0 0 

9.4 1 0 0 0 0 0 0 

9.4 3 0.1 0 0 0 0 0 

9.4 4 0.1 0.1 0 0 0 0 

9.4 11̂  0.1 0.1 0 0 0 0 

11.4 to 9.4 11 0.3 0.1 0.5 0 0 0 

11.4 11 0.3 0.1 0.5 0 0 0 

11.9 11 0.15" 0.1 0.5 1.5 0 0 

12.4 11 0.15" 0.1 0.5 1.5 0.6 0 

13.4 11 0.2" 0.1 0.5 1.5 0.6 0 

15.4 11 0.3" 0.18" 0.5 0.28" 0.6 0 

Final 0.2" 0.18" 0.15" 0.30" 0.1 
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Table 16. Continued 

East edge crack number and average crack widths 
(mm except inches where noted) 

Load —————————————————— 
(kips) Cycle 1 2 3 4 5 6 7 

Slab 2 

7.4* 0.3 0.2 0 0 0 0 0 

9.4 1 0.7 0.2 0.2 0.1 0.2 0.1 0 

9.4 3 0.7 0.2 0.2 0.1 0.2 0.1 0.1 

9.4 4 0.7 0.2 0.2 0.1 0.2 0.1 0.1 

9.4 
. .f 

0.7 0.2 0.2 0.1 0.2 0.1 0.1 

11.4 to 9.4 11 0.7 0.2 0.2 0.1 0.2 0.1 0.1 

11.4 11 0.7 0.2 0.2 0.1 0.2 0.1 0.1 

11.9 11 0.7 0.2 0.2 0.1 0.2 0.1 0.1 

12.4 11 0.7 0.2 0.2 0.1 0.2 0.1 0.1 

13.4 11 0.07" 0.2 0.2 0.1 0.2 0.1 0.1 

15.4 11 0.11" 0.2 0.2 0.1 0.2 0.1 0.1 

Final 0.20" 1.0 0.3 1.0 0.3 0.2 0.2 
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Table 16. Continued 

East edge crack number and average cgack widths 
(mm except inches where noted) 

Load 
(kips) Cycle 8 9 10 11 12 13 14 

Slab 2 

7.4 1 0 0 0 0 0 0 0 

9.4 1 0 0 0 0 0 0 0 

9.4 3 0.1 0 0 0 0 0 0 

9.4 4 0.1 0 0 0 0 0 0 

9.4 11̂  0.1 0 0 0 0 0 0 

11.4 to 9.4 11 0.1 0 0 0 0 0 0 

11.4 11 0.1 0.1 0 0 0 0 0 

11.9 11 0.2 0.1 0.2 0 0 0 0 

12.4 11 0.2 0.1 0.2 0.1 0 0 0 

13.4 11 0.2 0.16" 0.2 0.1 0.2 0 0 

15.4 11 0.2" 0.32" 0.2 0.1 0.2 0 0 

Final 0.25" 0.36" 0.4 0.6 0.5 0.6 0.4 
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Table 16. Continued 

West end crack no.̂ and  ̂ East eud crack nô  and  ̂
average crack widths (mm) average crack widths (mm) 

Load 
(kips) Cycle 1 2 3 4 1 2 3 4 5 6 7 

Slab 3 

5.4 1 .1 .1 .1 

6.4 1 .1 .3 .4 .2 

3.4 1 .2 

3.4 2 .1 .1 

6.4 3 .3 .4 .2 .3 .3 

6.4 4 .4 .4 .3 .3 .4 

6.4 8 .4 .4 .2 .4 .4 

5.4 11 .4 .4 .4 .4 .4 

7.9 11 .9 .9 .3 .9 .5 .04" 

8.4 11 .9 .1" .2 .1" .8 .1" 

7.7 11 .1" .12" 

Final .36" .12" .2 .12" .45" .15" .1 .23" .1" .05" .05" 



www.manaraa.com

148 

Table 16. Continued 

West edge crack no.̂  and average crack widths (om)̂  
Load 
(kips) Cycle 1 2 3 4 5 6 7 8 9 

Slab 4 

6.4 1 .05 .05 .05 

7.4 1 .1 .1 .1 .1 

8.4 1 .1 .1 

9.4 1 .1 

9.4 2 .15 

9.4 3 

9.4 6 .2 .2 .2 

13.4 11 .5 .5 .3 .1 .1 

14.4 11 .8 

5.7 11 .1 .2 .2 .1 .8 .5 .3 .1 .1 

Slab 5 

5.4 1 .1 .1 

5.4 2 

5.4 3 .1 .1 

5.4 4 .1 

5.4 8 

5.4 10 .1 .1 

6.4 11 l.l .1 

8.4 11 .2 .1 

Final .1 .13" 2.0 .2" .15" .1 .3 
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Table 16. Continued 

Load 
(kips) 

a 
East edge crack no. and average crack widths (mm) 

Load 
(kips) Cycle 1 2 3 4 5 6 7 8 

Slab 4 

6.4 1 .05 .05 .05 

7.4 1 .1 .15 .1 

8.4 1 .1 

9.4 1 .1 

9.4 2 .25 .3 

9.4 3 .2 

9.4 6 

13.4 11 .6 

14.4 11 .2 

5.7 11 .1 .05 .05 5.1 .6 .3 6.4 .1 

Slab 5 

5.4 1 .1 .1 

5.4 2 .1 .1 

5.4 3 .1 

5.4 4 .1 

5.4 8 .1 .1 

5.4 10 

6.4 11 .25 .1 .1 .1 .1 .1 .1 

8.4 11 2.0 2.0 

Final .2 .3" .3 .3" .25" .1 1.5 .1 
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edge \Aen the top surface cracking occurred. Along with the diagonal 

shear type cracking, it is important to note that the major diagonal edge 

cracks were accompanied by a relative vertical displacement. 

The direction of the diagonal cracks in Figure 33 is of interest when 

compared to the corresponding direction for a diagonal shear crack in an 

ordinary reinforced concrete beam type specimen. For an ordinary rein­

forced concrete beam specimen subjected to a symnetrical pattern of two 

concentrated loads, the diagonal shear crack would propagate towards the 

load points. However, the diagonal shear cracks in the slabs tested prop­

agated away from the load points. This Is due to a difference in the shear 

distribution of the two types of structures. In a beam, the shear Is zero 

between the load points and maximum between the load points and the end 

reactions. However, for these slabs, the reactions were greater between 

the load points creating more shear in this region and hence the 

diagonal crack propagating away from the load points, as dictated by the 

direction of the principal tensile stresses on a vertical plane at the 

slab edge. 

The cracking of the slabs on the top surface in Figure 32 was commen-

serate with the type of loading applied. That is, the areas Included by 

the four concentrated loads displaced downward and eventually broke away 

from the outer regions of the longer direction of the slabs, leaving a 

central region of each slab as the effective load-carrying element. This 

effective load-carrying section of each slab was approximately 8 feet 

spSTming the width of the slab. This effective load-carrying 

width, based on an average distance between major crack lines near the 

ultimate load, is shown in Figure 32. Ĥiis effective width crack pattern 



www.manaraa.com

151 

substantiates the yield-line distance, L", shown In Figure 6. The only 

difference between the theoretical crack pattern and the actual one Is 

that the actual one Is slightly curved. This curvature can be taken Into 

account by Integrating the work equations In yield line theory over the 

curved surface. However, for design, this Is rather laborious and does 

not appreciably affect the answer. 

Additional Information regarding the crack patterns, substantiating 

the yield-line pattern concept, was gained by examining the crack pattern 

on the underneath side of each slab. After completion of each slab test, 

the steel decking was removed so that the complete crack patterns for the 

bottom fibers of concrete could be observed. See Figure 34. 

Some cracks shown In Figure 34 were due to high stresses caused by 

moving the slabs after testing and thus must be discounted. The crack 

pattern of the underside of Slab 3, for example, must be discounted because 

the slab completely broke up when it was being handled after testing. 

However, the major cracks of Slab 3, as shown in Figure 34, were recorded 

as they propagated through the top as the slab was placed on the laboratory 

floor following testing. The crack pattern shown in Figure 34 for Slab 4 

covers only one-half the slab because the steel decking was only removed 

for one-half the slab. The decking was difficult to remove because of the 

necessity to first separate the welded T-wires from the decking. 

The basic underside crack patterns of the slabs seemed to substantiate 

the yield-line mechanism of Figure 6. It is observed that the cracking in 

Figure 34 generally propagates outward from the load points to the edges 

at about the location where the top cracking Intersects the edge. This 

intersection occurs at ends of the effective width, L", (discussed above) 
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SLAB 1 
Figure 34. Crack patterns on bottom surface of 

SLAB 2 
concrete after removal of steel decking 
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L", IS SAME AS THAT GIVEN FOR TOP 
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INCOMPLETE, CRACKS SHOWN ARE AS 
PENETRATED TOP FIBER AFTER SLAB 
REMOVAL. 
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for the top surface cracking. The same effective length, L", given in 

Figure 32 is indicated on each of the diagrams in Figure 34 for a compar­

ison. The crack patterns of both the underneath and top surfaces indicate 

the mechanism of failure for these slabs. Thus, the mechanism in Figure 6 

can be taken as the collapse mechanism for these slabs subjected to the 

four centrally-located concentrated loads. 

Photographs of Failed Full-Scale Slab Specimens 

Photographs showing the top surface cracking for each full-scale slab 

and example photographs of the edge cracking are shown in this section. 

All photographs were taken after testing of the slab was completed. 

Figure 35 shows the test setup and the cracked top surface of Slab 1. 

Figure 35. Test arrangement and overall view of Slab 1 
after testing 
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Slab 1 was the only slab with comer tie-downs and consequently is the 

only slab with diagonal cracking across the comers. A more detailed 

close-up view of the top surface cracking for Slab 1 is shown in Figure 36. 

The figure is made of four photographs, each comprising approximately 

one-fourth of the top surface area. This explains the uneven matchup of 

the slab edges. The markingsadjacent to each crack indicate the load on 

each jack in kips or the line pressure of the hydraulic system in ksi. 

The grid lines are at one foot intervals measured from the slab edges. The 

slight space in the center of Figure 36 is due to the overhead beam from 

which the photographs were taken. The 9-in. X 9-in. loading pads remain 

on the slab indicating the points of load application. The strain gage 

locations are quite visible in Figure 36. The cracks in the figure have 

been highlighted to help distinguish them from the strain gage wires. 

The edge cracking of Slab 1 is shown in Figure 37. The tie-down 

assemblies at two corners are visible in the photograph. As can be seen, 

the diagonal shear cracking generally progresses upward and to the left 

for cracks to the left of centerline and upward and to the right for cracks 

to the right of centerline. The shear-bond end slip that occurred at 

ultimate failure of the slab occurred over the central eight and one-half 

feet between the major diagonal cracks. 

Overall views of the top surface cracking that occurred for Slabs 2, 

3, and 4 are shown, respectively, in Figures 38-40. Figure 40 combines 

two photographs showing the east and west halves of the top surface. It 

Xfi> UUdCJL'Veu CUCtUy UUC y t eWkWULLWaue uwp JmO WW 

the central four-foot area outlined by the four concentrated load points. 

Figure 39 clearly shows how the predominate negative moment cracks extend 
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Figure 36. Composite photograph of top surface of Slab 1 after completion 
of test 
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Figure 37. Composite photograph of eait edge 
cracking of Slab 1 
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Figure 38. Overall view of top surface of Slab 2 

Figure 39. Top surface cracking of Slab 3 after testing 
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N 

INDICATES NORTH-SOUTH CENTSRLINE OF SLAB 

Figure 40. Composite of top surface views of east and west 
halves of Slab 4 

across Slab 3, with the major portion of the deformed surface occuring 

between these cracks. This type of top surface cracking confirms the estab­

lishment of the effective width for the analysis of the slabs as shown by 

L" in Figure 6. 

A close-up view of the diagonal edge cracking and end slip that 
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Figure 41. Close-up view of diagonal edge cracking and 
differential end slip that occurred on Slab 4 

occurred for Slab 4 is shown in Figure 41, This cracking and end slip was 

typical of all five slabs tested. Note the significant difference in the 

amount of end slip that occurred to the left of the main diagonal crack 

between B and C in Figure 41 and to the right of this same crack. This 

indicates that the observed end slip occurred mainly over the central 

effective load-carrying element of the slab. 

Slab 4 contained T-wires spot welded to the top corrugations. These 

T-wires served as the shear-transferring devices for the deck used in Slab 

4. When ultimate shear-bond failure occurred, these spot welds pulled 

through the decking. The damaged areas where the welds failed can be seen 

in Figure 42 which shows the underside of Slab 4. 

The top surface cracking of Slab 5 is shown in Figure 43. The cracking 
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Figure 42. Underside of Slab 4 showing locations where 
spot welds pulled through decking upon ulti­
mate shear-bond failure 

if 

Figure 43. Top surface cracking of Slab 5 
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of this slab is quite similar to that which occurred for Slab 3 shown in 

Figure 39. Again, the cracking was peripheral in nature about the loaded 

area and essentially defines an effective width of the load-carrying por­

tion of the slab. 

A close-up view of one of the major edge shear failure cracks for 

Slab 5 is shown in 44. This figure highlights the typical vertical separa­

tion which accompanied the major shear cracks which propagated across all 

the slabs establishing the main load-carrying elements of the slabs. The 

vertical separation was only pronounced near the edge of the slab and dissi­

pated as the cracking progressed inward as shown in Figure 44. 

Figure 44. A major diagonal shear crack on Slab 5 indi­
cating the vertical separation accompanying 

the major failure cracks of the slabs 



www.manaraa.com

164 

Behavior as Observed by End Slippage 

Failure of all five slabs was accompanied by end slip along most of 

the east and west edges. The end slip was characterized by a horizontal 

slippage between the steel deck and the concrete resulting In the concrete 

extending beyond the deck In a direction parallel to the deck corrugations. 

A close-up view of end slippage is shown by the photograph in Figure 41. 

This end slip was the primary characteristic of failure of the slabs and 

longitudinal slab element specimens. 

The end slip that occurred along the east and west edges of the five 

two-way slab specimens was not uniform along each edge. In fact, no end 

slip was observed along the last two feet of these east and west edges, 

and there was no end slip along the north and south edges. 

The variation of end slip that occurred along the east and west edges 

of four slabs is shown in Figure 45 based on measurements after test com­

pletion. The side of each slab demonstrating the larger slip values was 

the side on which primary shear-bond failure was observed to occur. 

Of particular importance in Figure 45 is the distance over which most 

end slip occurred. Most slip occurred over the central region with a 

width about equal to the L"-length, representing the effective width of 

the slab as shown in Figure 6. 

The interior or central slab sections demonstrated more horizontal 

movement than the exterior sections. This differential slip occurred at 

the diagonal cracking along the edge of the slab. This differential con­

crete movement in connection with the diagonal edge cracking is shown in 

Figure 41. 



www.manaraa.com

-s 0.4 
SLAB 2 

0.3 SLAB 1 

SLAB 5 I/I 
0.2 

SLAB 4 lU 
k— 0. 1 — 

0.6 

SLAB 2 

SLAB 4 

SLAB 1 

0.2 

0.1 

SLABS 

HORIZONTAL DISTANCE (FEET) 
IJPa 4' - 0" L.|P. 6' - 0" 6' - 0" 

Figure 45. Distribution of final end slip along the east and west edges of slab specimens 
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Significant magnitudes of end slip at periodic stages during testing 

are noted in Table 14. First observable end slip occurred prior to the ul­

timate load in all five slab tests. The approximate loads at which first 

observable slip occurred were 11.4, 9.4, 7.9, 7.4, and 8.8 kips per load 

point for Slabs 1-5, respectively. Apparently, the addition of the WWF and, 

in the case of Slab 1, the comer tie-downs contributed to end-slip re­

straint. 

It is of particular interest to compare end-slip behavior for the 

one-way longitudinal elements with end-slip behavior for the slab speci­

mens. The first slip of the one-way longitudinal specimens occurred at 

ultimate load, whereas the slip for the slabs occurred prior to ultimate. 

This can be attributed to the neighboring elements of the slab in two-way 

action helping to restrain the slab from complete failure. 

An interesting feature of the first observable slip is the state of 

stress of the steel-deck reinforcement. The longitudinal strains revealed 

that no strains in excess of the strain corresponding to the yield stress 

of the deck were observed prior to the first observable slip. This was 

true for all five slabs tested. Thus, the behavior of the deck at the 

time of first slip was elastic in all cases. 

Reaction Distribution Along Supports 

The distribution of the applied concentrated loading in the two-way ' 

slab tests is Indicated by the vertical reaction measurements taken along 

the south and west supports of each slab. The reaction measurements were 

made with the ball-bearing-ball caster and roller transducers located as 

shown in Figures 23-27 for each slab. The measured reaction values 
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obtained for each transducer for the load levels of 1/4, 1/2, and 3/4 of 

ultimate and just prior to ultimate are shown in Figure 46. 

The reaction values are plotted in Figure 46 for all slabs except 

Slab 4 (which esdiibited erroneous readings). Only values due to applied 

loading are indicated. Reaction measurements were taken due to the slab 

weight at casting, shrinkage and creep changes, and shore removal effects, 

but these measurements were somewhat erratic and consequently were not 

Included. The reliability of the reaction measurement at all stages of 

loading was checked by summing all load components, utilizing symmetry 

where no transducers existed, to compare with the total downward force. 

These summations checked equilibrium with a maximum error of only 6 per­

cent except one loading case of Slab 5 which had a 10 percent error. 

The plotted points in Figure 46 include only the actual measured loca­

tions along the south and west supports for each slab. The furthest left 

measured reaction along the west side of Slab 1 is the comer tie-down 

force which was plotted as the average of the three instrumented tie-down 

assemblies. The tie-down force is plotted as a negative value since it 

acted downward, whereas the upward reactions were plotted as positive val­

ues. The other negative values in Figure 46 occurred on the south side at 

a load just prior to ultimate and indicate a lifting off of the previously 

applied deadload force on these particular transducers. In fact, complete 

lift off of Slab 3 occurred along the south edge as noted in Table 14 and is 

is reflected by the corresponding negative reaction values in Figure 46. 

Note in Figure ̂ 6 that at the lower levels prior to cracking at 3.4, 

5.4, and 7.4 kip levels the west reaction distributions are generally trap­

ezoidal with small peaks ̂ n line with the concentrated load points. These 
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Figure 4(1. Distribution of reactive forces along the south and west supports for Slabs 1, 2 ,  3, and 5 
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lower level distributions agree with the behavior of a normal orthotropic 

slab subjected to concentrated loading. 

The shape of the reaction distribution curve along the west edge be­

comes somewhat erratic at 3/4 of ultimate load and above, due to excessive 

cracking of the slabs. The distribution of the reactive forces for these 

higher load levels generally demonstrated a higher degree of slab effi­

ciency since the curves shift their peak points toward the north and south 

directions. This change can be attributed to each slab being capable of 

transmitting shear forces laterally in the north-south directions once the 

central regions have undergone a considerable load. 

The west reaction distributions near ultimate generally indicate an 

effective width of the central main load carrying element of the slabs in 

agreement with the L" distance shown in Figure 6. The reaction values 

along the south support indicate the ability of the slabs to transmit shear 

in the direction transverse to the corrugations or the so-called "weak" 

direction. These reaction values occur only between load points due to cor­

ner uplift (except Slab 1 where corner uplift was due only to extension of 

tie-down assemblies). Note that generally the reaction values at or near 

ultimate were significantly less than the initial loading ranges. This is 

in line with the slab behavior of tending to dish downward causing a lift­

off at the corners inward along each side so that the shorter south side 

tended to have less reaction near ultimate. Slab 2 had significantly more 

transverse reinforcing steel, and thus was able to sustain a higher ultimate 

Ic-d and sllcv Ecre force distribution to the south support «t vltimatA. 

The relationship between applied load on the slab and percent of 

load distributed to the south and west edges is shown in Figure 47. Note 
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Figure 47. Percentage of applied load transmitted to each reaction support 
as loading increases for Slabs 1, 2, 3, and 5 
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that at the very beginning of load application all slabs showed about 78 

percent of the load transmitted to the west side in the so-called "strong" 

direction, except Slab 1 which indicated about 72 percent due to corner 

tie-downs. The sharp bend in the curves for Slab 1 can be attributed to 

the comer cracking across the top surface of the slab thus reducing the 

effectiveness of the corner tie-downs on the reaction distribution. It is 

noteworthy that all slabs near ultimate had a west edge force summation 

of at least 97 percent of the total force being carried in one-way action 

in the direction parallel to the corrugations. The west edge values of 

over 100 percent and the south edge values less than zero is due to the 

negative reaction value summation for the south edge resulting from the 

relieving of the initial slab dead load on this edge. Figure 47 shows 

that the maximum load on the south support beam does not occur at ultimate 

as one might expect, but actually occurs somewhere around the design load 

for all slabs, except possibly Slab 2. 

Strain and Deflection Behavior 

Various strains and deflections for each of the full-scale, two-way 

slabs were plotted at intervals to show the deflection contour and strain 

field distributions at certain intervals of loading. Figures 48-52 show 

these strain and deflection distributions. Each figure is divided into 

four quadrants. The northwest, southwest, southeast, and northeast quad­

rants show, respectively, the following quantities: 

1. Icngitudinal steel strain parallel tc steel-deck corrugations (y 

direction) taken at bottom corrugation, 

2. longitudinal concrete strain parallel to steel—deck corrugations 



www.manaraa.com

173 

X 

STEEL STRAIN IN 
Y DIRECTION 

DEFLECTION CONTOURS 
IN INCHES 

.090 

•TV 

CONCRETE STRAIN IN iCONCRETE STRAIN IN 
Y DIRECTION IX DIRECTION 

P = 3.4 KIPSA.Pi 
SLAB 'l 

HORIZONTAL SCALE 1 " = 3' - 0" 
STRAIN SCALE 1" = 500 Mil 

Figure 48. Measured strain and deflection distributions for Slab 1 
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Figure 49. Measured strain and deflection distributions for Slab 2 
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Figure 49. Continued 
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Figure 50. Measured strain and deflection distributions for Slab 3 
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Figure 50, Continued 
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Figure 51. Measured strain and deflection distribution for Slab 4 
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(y direction) taken on top surface of concrete, 

3. transverse concrete strain perpendicular to steel-deck corruga­

tions (x direction) taken on top surface of concrete, and 

4. deflection contours. 

Locations of deflection and strain gages for each slab were presented pre­

viously in Figures 23-27. Each strain gage location in Figures 48-52 is 

represented by a small dot. 

Note that the strain quantities listed above do not include all those 

measured. The diagonal gage of the rosettes is omitted since these readings 

were used in determining principal strains which are discussed later. The 

transverse steel strain readings which were taken from gages positioned at right 

angles to the deck corrugations, are not included. The transverse steel strains 

were not included in any of the slab analysis because the readings from these 

gages revealed a lack of composite action in the transverse direction. The er­

ratic transverse steel strain readings were attributed to independent bending 

of the deck corrugations on a cross-section transverse to the deck corrugations. 

Since the gages were located on the bottom fiber of the decking, any bending 

action of the deck which was independent of the conposite action greatly in­

fluenced the strain readings. This phenomenon was substantiated on the 

strain-gaged transverse one-way slab element tests. On the other hand, the 

steel-deck strains measured parallel to the deck corrugations appear to 

give correct readings for the composite section. This, too, was 

substantiated by the strain gaged one-way slab element tests. 

The deflection qontourm In Figures 48-52 were obtained by utilizing 

a computer program which plotted contours obtained from the deflection 

data. The deflection contour labels are for inches of deflection downward. 
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unless preceded by a minus sign indicating an upward displacement. The 

upward displacements occurred in the comer regions of Slabs 2-5 since 

those slabs did not have comer tie-downs. 

Not all of the strain gage data are shown in Figures 48-52. Only 

those locations which fall close to the distribution lines located every 

three feet in the x-direction were used. The reference axis for each dis­

tribution section is represented by a light horizontal line at each inter­

val with tensile strains plotted above and compressive strains plotted 

below the reference line. 

The plots in Figures 48-52 indicate the strain and deflection dis­

tributions at four discrete load levels for each of the five full-scale 

two-way slabs. The levels chosen were approximately 1/4, 1/2, 3/4, and 

full ultimate load. The corresponding load values for each slab are given 

in Table 17. The cycling load (for Slabs 2-5) and the ultimate load are 

Table 17. Loads used for strain and deflection distributions 

Actual load values used at various 
stages of loading (kips/L.P.) 

Slab 
No. Pu/4 

3P^/4 
Prior to 
Ultimate 

Cycling 
Load 

(kips/L.P.) 

Ultimate 
Load 

(kips/L.P.) 

1 3.4 7.4 11.4 13.4 (2nd one) None 13.7 

2 3.4 7.4 11.4* 15.4* 9.4 15.5 

3 3.4 5.4 6.4^ 8.4* (2nd one) 6,4 8.8 

4 3.4 7.4 11.4* 14.4* 9.4 14.4 

5 3.4 5.4 7.4* 9.4* 5.4 9.4 

a 
Load values occur after the 10 cycles of repeated loading. 

L̂oad value occurs at the 10th cycle of repeated loading. 
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given for each slab in Table 17. 

The strain and deflection distributions for Slab 1 are shown in Figure 48 

and are contained on four plots as the load changes from 3.4 to 7.4 to 11.4 to 13.4 

kips per load point. Even though most of the steel strains for Slab 1 were 

measured on the top corrugation, the values plotted represent bottom cor­

rugation strains. The bottom strains were obtained by extrapolating a linear 

function from the concrete strain to the top corrugation steel strain. The 

bottom strains were obtained and plotted for all slabs so as to allow 

comparison of strain behavior for all slabs at the various load levels. 

The strain distributions in Figures 48-52 give rise to several impor­

tant behavioral observations regarding each slab. These are first dis­

cussed for all five slabs and are then followed by comparisons in changes 

in behavioral characteristics as they occur from slab to slab. 

The transverse concrete strains are tensile over the entire section, 

taken about three feet from the south edge for Slab 1 and taken about 

three to six feet inward for Slabs 2-5. These tensile concrete strains 

indicate the negative bending moment that occurred as predicted by the 

yield-line collapse mechanism shown in Figure 6. The tensile transverse 

concrete strains continued to increase for each load Increment shown except 

the last when cracking of the slab had occurred. The top surface cracking, 

shown in Figure 32, that occurred across the slab was generally near this 

section of tensile strains. The other concrete transverse strains were 

generally compressive except for a point midway between the load points 

for the two higher loads where a tensile strain was observed. Thus, after 

significant slab deformation the concentrated loads caused the negative 

bending action to occur between their points of application. The concrete 
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transverse and longitudinal strains for the two south distributions lines 

for Slab 3 in Figure 50 were omitted for the first two load plots due to an 

error in data collection that occurred for the furthest southwest six loca­

tion points. The data appeared reasonable after cycling and thus is in­

cluded, but this too could be in some error. 

The longitudinal steel and concrete bending strains indicate a pro­

gressively increasing magnitude of strain from the first section three 

feet in from the edge towards the central part of the slab. The longitu­

dinal strains (parallel to deck corrugations) increased near the load 

points, especially the steel strains at 3/4 of ultimate. The erratic 

strains indicated for the ultimate load level can probably be attributed 

to the prior cracking that had taken place in the slab. 

As can be seen in Figures 48-52, most of the strains increased uni­

formly from the slab edge to the centerline. Those sections where the 

trend did not hold were either near the concentrated load points or where 

there was some Influence due to cracking. The higher magnitudes of strains 

at extreme fibers of steel and concrete.generally occurred near the pre­

dicted collapse mechanism yield lines given in Figure 6. 

The deflection contours, or lines of equal deflections, shown in 

Figures 48-52 indicate a fairly uniform deflection gradient, or slab slope, 

for those regions outside the loaded central 4-ft X 4-ft area. These 

uniformly spaced contours existed for each of the load levels shown for 

the five slabs. The negative deflection contour lines in Figures 49-52 

represent uplift deformations which occurred in the corner regions of all but 

the first slab. The deflection due to extension of the tie-down rod assemblies 

was not considered in these contour plots since this extension was quite small. 
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The centrally loaded region had a fairly constant deflection for each of 

the load Increments, as can be seen from each of the contour plots. 

The location of the zero contour line for Slabs 2-5 in Figures 49-52 

is significant. The intersection of the zero deflection contour with the 

16 foot side occurs at about the same location as the intersection of the 

yield-lines for the collapse mechanism. Thus, the contact made with the 

reactions along the east and west slab edges defines an effective width 

of the main load-carrying portion of the slab. Generally, the zero con­

tour intersection with the east or west edges tended to move inward as the 

load increased during the initial loading stages up to about one-fourth 

of ultimate, then remained fairly constant until significant cracking near 

ultimate caused some changes. Generally, the intersection of the zero con­

tour with the east or west edges occurred at about the same points for all 

load levels for Slabs 2-5. 

The intersection of the zero contour with the north or south side was 

usually quite close to the center, indicating that not much of the slab 

was in contact with the support. In fact. Figure 50 shows how Slab 3 com­

pletely lifted off its north and south reactive supports prior to its ulti­

mate load (shown at the 8.4 kips level in Figure 50). Slab 3 without sup­

plementary reinforcing did not have sufficient ductility to permit its 

north and south edges to maintain contact with the supports. 

A comparison of Slabs 1-3, which had the same decking but different 

amounts of supplementary reinforcing indicates that Slab 2 with the most 

supplementary reinforcing 

1. exhibited the greatest deformations, 

2. exhibited the highest ultimate load. 
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3. sustained the highest cycling load, and 

4. exhibited more favorable distribution of bending strains, as well 

as withstanding the largest strains. 

An indication of the overall load versus deflection behavior of the 

five slabs is shown in Figure 53. The deflections shown in Figure 53 are 

the centerpoint deflections taken during the final cycle of loading. The 

initial starting point for the curve for Slab 1 is zero since this slab 

was not cycled. The initial cycle deflections and deflections after the 

ultimate load are omitted for clarity. As can be seen in Figure 53, Slabs 

1, 3, and 5 had about the same stiffness over the initial straight-line 

portion. Slabs 2 and 4 show slightly less stiffness in Figure 53, but this 

is probably due to the high cycling load for these two slabs. Points along 

the abscissa indicate the amount of slab distortion remaining after removal 

of load upon completion of the test. It is observed that all slabs, except 

3 and 5, exhibited fairly linear load-deflection relationships below the 

level defined by a deflection of L/180. Slabs 3 and 5, without effective 

supplementary reinforcing, did show some nonlinear behavior at the L/180 

level and, did not undergo as much ultimate deflection as did the other 

slabs. 

An indication of deflection behavior corresponding to initial slab 

cracking can also be seen in Figure 53. Shown for each slab is the load 

for the first observed crack. As can be seen, the slabs exhibited a stable 

behavior well beyond the first observable crack. 

A detailed load-deflection behavior before repeated loading is shown 

in Figure 54. Shown here are plots of the initial cycle of loading. As 

can be seen there is a linear relationship for all slabs up to about 3.4 
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kips per load point followed by another fairly linear trend up to the max­

imum load. Also indicated on Figure 54 is the amount of permanent defor­

mation occurring in the slabs after the first cycle of loading (except 

Slab 1). The magnitude of this deflection was somewhat dependent upon the 

maximum load subjected to each slab. Slabs 2 and 4 had the highest loads, 

and their permanent deformations were the largest. Slab 2, with a large 

amount of supplementary reinforcement, had slightly less residual deflec­

tion than Slab 4. 

Figure 55 shows a more detailed illustration of the load-deflection 

behavior for Slabs 2, 3, and 4 due to cycling. This figure Includes all 

slabs subjected to repeated loading except Slab 5 which was very similar 

to Slab 3. Slab 5 was omitted from Figure 55 for clarity. The repeated 

load portions for each slab are grouped and labeled, along with the ini­

tial load cycles. The load repetition groupings for each slab were 

probably curves, but straight-line representations were shown since readings 

were only taken at minimum and maximum loads. 

Of particular importance in Figure 55 is the amount of residual de­

flection after each cycle. Slab 3 attained most of its residual deflec­

tion at the end of the first cycle with only a very slight Increase on 

each subsequent cycle. Slabs 2 and 4 also had most of their residual de­

flection occurring at the end of the first cycle; with Slab 4 exhibiting 

the greatest magnitude of final permanent deformation. The amount of per­

manent deformation for Slab 2 versus Slab 3 is probably due to the higher 

magnitude of cycling load. The supplementary reinforcement in Slab 2 was 

primarily responsible for this slab having the capability to develop the 

increasing cycling load over that of Slab 3 and still maintain a stable 
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repeated load cycle. The difference in magnitudes of Slabs 2 and 4 can be 

attributed to the difference in deck reinforcement in the two slabs. 

It is significant that the cycling loads applied to the slabs were 

quite high. In terms of percentage of ultimate load, they were 60.6, 72.7, 

65.3, and 57.4 for Slabs 2-5, respectively. Each test was intended to be 

cycled at 60 percent of ultimate, but the cycling load was estimated from 

behavioral characteristics during loading which explains some of the 

variances in percentage of cycling load. Slab 3 tended to develop cracks 

more rapidly during cycling, and was most affected.by the repeated loading. 

This result can probably be attributed to the lack of supplementary rein­

forcement to help keep the slab intact and to help in the distribution of 

forces throughout the slab. 

The corners of Slabs 2, 3, 4, and 5 were not secured and were free to 

lift off the supports. Figure 56 shows the vertical uplift deflection 

that occurred at the southwest load point of each slab, and are indicative 

of the uplift at the other three corners. The curves shown in Figure 56 

represent the final load cycle to ultimate. The beginning point of each 

curve indicates the residual deformation of the comers after 10 cycles of 

loading. 

As can be seen in Figure 56, the corner deflection behavior remained 

linear for almost the entire loading for Slabs 2 and 4 (excluding possibly 

the last load Increment of Slab 4, for which the ultimate corner deflec­

tion was not recorded). The load-deflection curve for Slab 2 became non­

linear at about 83 percent of the ultimate load, and Slabs 3 and 5 exhib­

ited a linear behavior of corner uplift up to 68 and 60 percent of ultimate, 

respectively. The major variable contributing to these significant changes 
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in nonlinearity is probably the amount of supplementary reinforcing. 

Slabs 2 and 4 had significant amounts of supplementary reinforcing trans­

verse to the decking, whereas Slabs 3 and 5 did not. 

Principal Strain Analysis 

A principal strain analysis was performed on the three-element rec­

tangular rosette strain gages placed on the concrete surface of the slab 

specimens. The principal strains, and Sg* vere computed from the fol­

lowing equations as given by Dally and Riley (6): 

'l ° + Y + l/2(«x - + <2845 - \ (38) 

'2 ' - «y) - l/2(«x - + (2«45 " ' Ŷ  

where 8̂ , and are the strains in the x, y, and 45-degree angle 

directions. The x-axis was taken as transverse to the deck corrugations 

with the y-axis parallel to the corrugations. The directions of the prin­

cipal strains were obtained from the following equation for the principal 

angle, 0 : 

2e, c - - e 
tan 20 = ——  ̂ (40) 

X y 

where the one principal angle from Equation (40) refers to the angle be­

tween the x-axis and the direction of the maximum principal strain, ê , 

and the other principal angle refers to the angle between the x-axis and 

the direction of the minimum principal strain, ê . 

The principal strain analysis was performed on all rosettes placed at 

the locations shown in Figures 23-27. However, only those principal strains 
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for those rosettes mounted in the southwest quadrant on the top fiber of 

concrete are presented. The other gage locations on the concrete surface 

were primarily for a check on symmetry. The principal strain analysis for 

those rosette gages mounted on the steel decking is not presented due to 

the invalid strains transverse to the corrugations. The invalidness 

of the strains was discussed previously under strain distributions. 

The results of the principal strain analysis are shown in Figures 57-

61 for each of the five slab tests. Each rosette location in the five 

figures is depicted by a small square oriented in the direction of the 

principal angle as given by Equation (40). The magnitudes of the maximum 

and minimum principal strains are represented by the length of an arrow 

drawn from each respective face of the squares. The length of the arrow 

is measured from the face of the square to the end of the arrow. An 

arrowhead pointing away from the square indicates a tensile strain and 

an arrowhead pointing toward the square indicates a compressive strain. 

The arrow lengths plotted in Figures 57-61 were plotted to consistent 

scales at each one-fourth of the ultimate load. Due to the large range in 

magnitude, it was necessary to change scale size as the load values in­

creased. However, the scales were kept consistent at each quarter of ulti­

mate to allow comparisons amongst the slabs. A missing arrow indicates 

that the principal strain was of very low magnitude. Low values of less 

than 20 microinches per inch on the lower loads and less than 40 microinches 

per inch on the loads just prior to ultimate were omitted. 

The principal strain analysis was performed for all load increments 

before and after cycling, however only the results at 1/4, 1/2, and 3/4 

of ultimate, and just prior to ultimate load are presented. The load values 
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presented are the same as those presented in Table 17. Six gage locations 

in the southwest corner of Slab 3 were omitted for the first two load 

values before cycling due to an apparent error in data collection for 

those strains. The data for these six locations after cycling appeared 

okay, and is included, but this data too could be in some error. 

The principal strain analysis yields several important behavioral 

observations regarding the force distributions in the slabs. A look at 

the general locations of where the largest principal tensile strains 

occurred substantiates where the top surface cracking occurred as was shown 

in Figure 32. À study of Figure 32 and the directions of principal tensile 

strains reveals that those strains are generally perpendicular, to the top 

surface cracking. Note that as the top surface cracking across the slabs 

in the east-west direction curves towards the east and west edges, so does 

the direction of the principal angle. The locations of these high princi­

pal tensile strain regions further substantiates the location of the top 

surface cracking of the negative yield line pattern as given in Figure 6. 

The high tensile strain at the furthermost southwest gage location on 

Slab 1 is due to the corner tie-down force. The direction of tensile strain 

also is nearly perpendicular to the diagonal corner cracking that occurred 

on Slab 1 at a load value just prior to 11.4 kips per load point. 

A rough indication of the cracking occurrences from the tensile strain 

magnitude can be seen by looking at the magnitude of strain necessary to 

cause cracking of concrete as indicated by the modulus of rupture stress. 

The values of the uniaxial strain corresponding to modulus of rupture 

cracking are 132, 139, 142, 142, and 148 microinches per inch, respectively 

for Slabs 1-5. The actual value of tensile strain to cause cracking of the 
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slabs is dependent on the state of the biaxial stress field. However, 

uniaxial strains give an indication as whether cracking was possible. As 

can be seen the magnitudes of the tensile strains do generally predict the 

cracking locations across the slab surfaces, including the corner cracking 

of Slab 1. 

The principal strains were not converted into corresponding stresses 

due to the time necessary to determine the complex biaxial stress-strain 

relations for concrete. However, a method presented by Liu, Nilson, and 

Slate (20) does give the appropriate stress-strain relations for concrete 

to account for microcracking and the biaxial effects. A method such as 

presented by Reference (20) should be used if stresses are desired from 

the given strain fields. 

The locations of the larger compressive principal strains generally 

follow a diagonal pattern extending outward from the concentrated load 

point application location to the edge of the slab. These diagonal lines 

coincide with the locations of the expected positive moment yield line 

patterns as given in Figure 6. These large compressive principal strains 

are generally perpendicular to those yield lines. These principal strains 

further substantiate the locations and directions of the expected yield 

pattern for the areas of the slabs subjected to the higher moment forces. 

Actual moment field distributions in the slabs can be computed from 

the strain fields. These moment computations should take into account 

the biaxial relations of concrete strength; however, as can be seen by the 

strain distributions previously presented and the principal strains, the 

compressive strain is much larger in magnitude than the other principal 

strain. Thus, approximate moments very close to the two experimental 



www.manaraa.com

219 

ones at each gage location may be computed based on the uniaxial strains. 

These moments were computed for all strain locations for all loads before 

and after cycling for the five slab tests. These moment distributions 

follow the strain distributions and thus, will not be repeated here. How­

ever, sample moment computation behavior is presented in connection with 

the equivalent orthotroplc plate analysis performed on the five slab tests. 
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CHAPTER 6. RESULTS AND ANALYSIS OF SLAB ELEMENT TESTS 

Slab Elements with Steel-Deck Corrugations Transverse 

to Specimen Length 

The 12 slab elements constructed with the deck corrugations trans­

verse to the specimen length gave results for the determination of the 

flexural capacity cransverse to the deck corrugations. These 6 X 2-foot 

specimens were tested as was shown in Figure 18. The description of these 

specimens was given in Table 6. 

Various behavioral characteristics of these transverse specimens were 

observed. These include deflections, strains, and mode of failure. The 

instrumentation was presented previously in Table 12. The primary mode of 

failure for those specimens containing no supplementary reinforcement was 

that of sudden flexural failure like that of a plain concrete beam. For 

those specimens containing supplementary reinforcement, the failure was 

characterized by yielding of the reinforcement or by failure of the splices 

of the supplementary steel. The added supplementary steel resulted in a 

somewhat more ductile behavior near failure load. 

Failure of all transverse sections was initiated by a vertical crack 

propagating from one of the top corrugations in the central region between 

the two line loads. A typical principal failure crack is shown in Figure 

62 for transverse Specimen 2. Those specimens containing more substantial 

amounts of supplementary reinforcing had several vertical cracks in the cen­

tral region between the load points, however, the orientation and location 

The test results for the 12 slab element specimens are presented in 

Table 18. In addition to ultimate loads, the table gives the cross-sectional 
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21.5 21.5 

PRINCIPLE = 
FAILURE CRACK 

34.5 

Figure 62. Principal failure crack for transverse specimens 

area of supplementary steel reinforcing parallel to the specimen length and 

its depth location. Also shown is the applied load at which first cracking 

was observed. For those specimens containing no supplementary reinforcing, 

first cracking occurred at the same instant the ultimate load was reached. 

The loads do not include the self-weight of the specimens. The unit dead 

loads are presented in a separate column. 

Several interesting computations were made regarding the predicted 

ultimate load capacity of these transverse members. The information of 

depths and steel areas in Table 18 was used to arrive at various computed 

flexural quantities which are summarized in Table 19. The total ultimate 

ûiomerit capacity in Tabic 19 includes the specimen dead ueî Vit-, Since the 

transverse specimens had to span only a distance of two feet with their 

lengths basically uniformly supported during casting, the moment due to dead 
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Table 18. Ultimate experimental test results for slab elements with deck corrugations transverse to 
length, (see Table 6 for description.) 

Transver&e 
Specimen 

No. 

Total Applied Load 
At First Observable 

Crack, (kips) 

Specimen Unit 
Dead Weight, w 

(paf) 

Total Ultimate 
Applied Load, P 

(kips) 

Ultimate Applied 
Shear, V 
(kips/ft̂  ̂

Shear 
Span, 
L' (in.) 

1 1.55 56.0 1.55 0.39 24 

2 1.95 56.0 1.95 0.49 21.5 

3 1.55 50.0 5.25 1.31 21 

4 1.45 50.0 1.85 0.46 21 

5 3.55 50.0 6.25 1.56 21 

6 unknown 50.0 1.95 0.49 21 

7 1.25 50.0 1.25 0.31 21 

8 2.2 48.0 4.3 1.08 24 

9 2.1 48.0 3.5 0.88 24 

10 2.1 48.0 3.9 0.98 24 

11 0.36 50.9 0.36 0.09 24 

12 0.55 50.9 0.55 0.14 24 
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Table 18,. Continued 

Area of 
Ultimate Supplementary Depth to 

Transverue Applied Out-to-out Depth Above Span Steel Parallel Centroid of 
Specimen Moment, Depth, D Corrugations, Length, to Length, A ? Supplementary 
No. (ft-kips/ft) (in.) D-dj (in.) L (in.) (in.2/ft) Steel (in.) 

1 0.78 5.0 3.45 66 0. 0. 

2 0.87 5.0 3.45 66 0. 0. 

3 2.30 4.5 2.95 66 0.144 2.80 

4 0.81 4.5 2.95 66 0.0575 2.85 

5 2.73 4.5 2.95 66 0.144 2.80 

6 0.85 4.5 2.95 66 0.0575 2.85 

7 0.55 4.5 2.95 66 0. 0. 

8 2.15 4.5 3.18 65 0.150 3.07 

9 1.75 4.5 3.18 65 0.150 3.07 

10 1.95 4.5 3.18 65 0.150 3.07 

11 0.18 5.5 2.50 67 0.0282 1.0 

12 0.28 5.5 2.50 67 0.0282 1.0 
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Table 19. Results of computed flexural properties of transverse specimens 

, Depth to 
Total Ultimate Gross Moment of Inertia, in, /ft Weighted Modulus 

Transverse Moment, Including Average of Rupture, 
Specimen Dead Weight, To deck c.g.s. Above deck To weighted depth Depths, d„, f 
No. (ft-kips/ft) I I I (in.) (psl) 

82 S3 

1 0.99 83.5 41.1 53.6 3.77 466 

2 1.08 82.9 41.1 53.6 3.77 466 

3 2.49 58.0 25.7 36.3 3.31 455 

4 1.00 58.0 25.7 36.3 3.31 455 

5 2.92 58.0 25.7 36.3 3.31 455 

6 1.04 58.0 25.7 36.3 3.31 455 

7 0.74 58.0 25.7 36.3 3.31 455 

8 2.33 56.8 32.2 42.1 3.48 541* 

9 1.93 56.8 32.2 42.1 3.48 541* 

10 2.13 56.8 32.2 42.1 3.48 541* 

11 0.38 60.7 15.6 53.6 3.77 483 

12 0.48 60.7 15.6 53.6 3.77 483 

Computed from splice length using ultimate bond strength. See text. 
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Table 19. Continued 

Transverse 
Specimen 
No. 

Computed Moment, (ft-klps/ft) Computed Ultimate Moment, M̂ ,(ft-kips/ft) 
Transverse 
Specimen 
No. 

Using 

\ 
Using Using 

^2 % By ACI By General Strain Analysis 

1 1.48 0.93 1.10 — — 

2 1.48 0.93 1.10 — — 

3 1.14 0.66 0.83 2.61 2.55 

4 1.14 0.66 0.83 1.05 1.03 

5 1.14 0.66 0.83 2.61 2.55 

6 1.14 0.66 0.83 1.05 1.03 

7 1.14 0.66 0.83 — — 

8 1.33 0.91 1.09 3.35 ̂  
(2.26)b 

3.24 

9 1.33 0.91 1.09 3.35 ̂  
(2.26)b 

3.24 

10 1.33 0.91 1.09 3.35 
(2.26)b 

3.24 

11 1.19 0.50 1.14 — — 

12 1.19 0.50 1.14 — — 
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2 
weight was taken as simply (1/8)(w)L . This dead weight moment was then 

added to the live load experimental moment obtained from Table 18. This 

total experimental capacity is then used as a comparison to various com­

puted moment capacities. 

Since those specimens not containing supplementary reinforcement 

failed like that of a gross concrete section, a question arises as to the 

effective depth of this section. Three computed moment capacities were 

arrived at by using three different depths resulting in three corresponding 

moments of inertia to be used in the following ordinary flexure formula: 

(f )(I ) 
M = (41) 

where 

f̂  = modulus of rupture strength of concrete, 

Ig = the gross moment at inertia of the section, and 

c = depth to extreme tension fiber. 

The two moment of inertias, I and I in Table 19, are computed by con-
gl §2 

sidering a rectangular section whose depth is to the steel deck c.g.s. for 

I , and whose depth is to the top of the steel deck for I . 
®I ®2 

The third moment of inertia, I , was computed using a weighted depth. 

The weighted depth was obtained from the following expression: 

Vl + + ̂ 2? 
S irrr 

where 

= area above the corrugations. 

Ag = area wicnxn cne corrugaLions, 

d̂  = depth of Aĵ , 
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dg = depth of Ag = depth of deck, d̂ , and 

dg = weighted depth of concrete area. 

As can be seen in Table 19, comparing the resulting three computed 

moment capacities to the experimental capacity indicates that the depth 

to the top of the corrugations gives the best conservative result for 

those specimens containing no supplementary steel, i.e. Numbers 1, 2, 7, 

11 and 12 (neglecting the area of steel for 11 and 12 since steel was in 

the top part of specimen). Thus, the flexural capacity transverse to the 

corrugations can be adequately determined from Equation (41) using the 

gross moment inertia of a section above the corrugations. This result is 

for those cases involving no supplementary reinforcing. 

For those cases when supplementary steel existed, the flexural capa­

city was computed utilizing the following standard ACI (2) and (4) formula: 

"u = U (42) 

where 
AgF 

% ' .85f̂ (12) » 

Ag = area of supplementary steel, 

Fy = yields strength (see Table 2), and 

f̂  = concrete strength (see Table 3). 

The resulting ultimate moment computations based on Equation (42) are tabu­

lated in Table 19. However, the use of Equation (42) assumes an ultimate 

concrete strain of 0.003 in the top fiber. A check was performed and it was 

found that the supplementary reinforcing had Insufficient strain ductility 

to allow the concrete strain to reach its ultimate assumed value. Also 

shown in Table 19 are ultimate moments as computed by general strain analysis. 
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The assumptions of this general strain analysis are based on the steel 

reaching yield strain (near ultimate for this high-strength steel) as the 

limiting criteria and letting the resulting equilibrium of tensile and 

compressive forces determine the predicted ultimate moment. The method of 

this general strain analysis is discussed later in this chapter. Note that 

the invalid ACI Equation (42) and the general strain analysis still give 

predicted moments which are very close to each other. 

The predicted moments by these computations compare fairly well with 

the experimental results for Specimens 3, 4, 5, and 6 but do not compare 

very favorably for Numbers 8, 9, and 10. Specimens 8, 9, and 10 contained 

deformed wire spot-welded to the top corrugations. This wire came in seg­

ments of roughly one panel width of the decking and, when placed, had 

splices of about 4% inches. As discussed below, the actual moment capacity 

for Specimens 8, 9, and 10 was limited by the splice. 

The number in parenthesis for Specimens 6, 9, and 10 in Table 19 under 

the column giving the computed ultimate moment, M̂ , was-found by determining 

the maximum force the splice would withstand. The ultimate bond stress for 

D4 deformed wire based on pullout tests was given by Lloyd and Kesler (21) 

as 800 psi. Equating this ultimate bond force to the force of the rein­

forcing steel results in the following expressions (for 4 wires per foot): 

4U nt 4 = A f 
u  W 8^  S  

where 

U, = ultimate bond stress- 800 psi (21), 

t = diameter = 0.212 inches, 
w 

!> - length of splice - 4% inches. 
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A = area of deformed wire steel per foot = 0.150 square inches, 
®2 

and 

fg = stress in supplementary steel reinforcement in psi. 

Thus 

(43) 

Using the stress given by the bond Equation (43), the moment capacity 

was then computed using the strain and force diagrams given in Figure 63. 

Note that a linear stress-strain relationship for the concrete was used in 

this case in that the computed concrete strain necessary for equilibrium 

was about one-fourth that at f̂ . Thus for low concrete strains, the con­

crete stress-strain diagram is essentially linear. Equating the C and T 

forces in Figure 63 gives the resulting strain in the concrete, ê . This 

is accomplished by substituting for f̂  the following relationship: 

C f 
c e 

f =9603 lbs 
$2 5 f 

= ~ = 0.00182 

s 

Figure 63. Strain and force relations for Transverse Specimens 8, 9, 
and 10 
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where 

= modulus of elasticity of concrete, taken as 57,000 ̂/f̂  as 

given by ACI code (2). 

Once was known, then the location of the C force was known, as given in 

Figure 63. The resulting moment of the section of 2.26 ft-kips per ft was 

then found by summing moments about the C force. This moment is given in 

parenthesis for in Table 19 for Specimens 8, 9, and 10. 

It is important to note that the for Specimens 8, 9, and 10 was 

based on a limiting stress as determined by the splice of the supplementary 

steel, and thus, the steel did not reach yield. However, for Specimens 3, 

4, 5, and 6, the capacity, M̂ , was adequately predicted by assuming a 

yielding of the supplementary steel. 

Thus, the ultimate flexural strength of sections containing supplemen­

tary reinforcement transverse to the deck corrugations may be obtained by 

general strain analysis, ultimate strength computations, neglecting any 

beneficial effect of the presence of the steel decking, except for those 

cases controlled by splices of the supplementary steel. For those cases 

where yielding of supplementary steel is preceded by a bond failure 

of the splice, the flexural capacity transverse to the deck corrugations 

may be obtained by considering the ultimate bond strength of the splice. 

This In turn gives the steel stress in the supplementary steel which then 

can be used to determine the moment capacity. 

A summary of the behavioral characteristics of the transverse slab 

element tests can be shown by looking at the load-deflection characteris­

tics. These load versus deflection relationships are shown in Figure 64. 

Note that the specimens were grouped and the average load-deflection curve 
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is shown for the centerpoint only of each group. Each group comprises all 

specimens that were identical in size and reinforcing as indicated on the 

figure. As would be expected, those specimens containing the larger amounts 

of supplementary reinforcing exhibited the greatest ductility, whereas those 

containing no additional supplementary steel exhibited a load-deflection 

curve like that of a plain concrete beam. The usual L/360 criteria is 

shown on the figure as a measure of the relative amount of deflection sus­

tained by each type of specimen. 

3.0 

2.0 
ua ue 

^1.5 
I-

u_ 
g 

m 

1.08 .48 .60 .72 

C DEFLECTION - inche# 

.36 

Figure 64. Load-deflection relationships of the transverse slab element 
tests 



www.manaraa.com

232 

Slab Elements with Deck Corrugations Parallel to Specimen Length 

General results 

As discussed previously, testing of slab elements with the deck corru­

gations parallel to the specimen length was done primarily for four pur­

poses. These purposes are as follows: 

1. To determine shear-bond regression coefficients for use in pre­

dicting one-way ultimate shear capacity for the 3-inch-deep 

decking used in Slab 5, 

2. to determine the one-way characteristics of slab tests by testing 

companion specimens exactly like the two-way slabs, 

3. to test the effect of light supplementary reinforcing on shear-

bond strength, and 

4. to determine behavioral characteristics of failure of one-way 

elements reinforced with 3-inch-deep steel decking. 

A complete summary of experimental results of these one-way longitudi­

nal slab element tests is shown in Table 20. Included in Table 20 are the 

ultimate applied loads, shears, and moments exclusive of the specimen's own 

weight which is listed separately. The specimen dead weight was taken as 

an approximate average weight over the length of the member. Other perti­

nent information in the table includes the area of steel reinforcing, 

depths to the reinforcing, and the applied load at which the first major 

crack was observed. All specimens were tested with either a single concen­

trated- line load or two single concentrated-line loads as shown in Figure 4. 

The description of specimen purpose, size, end material properties is given 

in Table 9. 
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Table 20. Loads, shears, and moments for longitudinal specimens 

Total Total Total 
Speci­
men 
No. 

Span 
Length, 
L (in.) 

Shear 
Span, L' 
(in.) 

Applied Load Applied 
At First Load, P 

Crack (kips) (kips) 

Applied 
Shear, V 
(kips/ft) 

Applied 
Moment 

(ft-kips/ft) 

1 68. 24. 9.7 10.9 2.73 5.45 

2 68. 24. 10.3 10.3 2.58 5.15 
3 68. 24. 11.3 12.1 3.03 6.05 
4 68. 24. 10.3 10.3 2.58 5.15 
5 68. 24. 11.8 11.8 2.95 5.90 

6 68. 24. 10.8 10.8 2.70 5.40 

7 140. 45.5 5.0 13.5 2.38 9.02 
8 140. 45.5 3.3 15.0 2.65 10.04 
9 140. 70. 2.44 6.84 1.14 6.63 
10 140. 48. 4.2 8.8 1.48 5.93 

11 140. 70. 1.84 7.24 1.22 7.09 
12 140. 48. 2.7 8.3 1.39 5.55 
13 68. 24. 7.33 13.03 2.18 4.36 
14 68. 24. 8.13 13.63 2.26 4.51 
15 68. 24. 8.13 13.53 2.24 4,48 

16 140. 48. 3.5 8.5 1.44 5.75 
17 140. 70. 2.44 7.14 1.18 6.91 
18 188. 86. 1.23 5.93 0.99 7.11 
19 140. 45.5 3.5 9.5 1.57 5.96 
20 140. 45.5 3.3 9.3 1.54 5.86 

21 188. 86. 1.01 3.81 0.64 4.55 
22 188. 86. 2.55 7.66 1.28 9.15 
23 140. 70. unknown 10.28 1.71 9.99 
24 140. 70. 4.22 10.30 1.72 10.01 
25 116. 48. 6.94 14.70 2.45 9.80 

26 116. 48. 5.82 13.59 2.27 9.06 
27 116. 48. 4,02 12.34 2.06 8.23 
28 68. 24. 15.94 18.75 3.10 6.21 
29 68. 24. 11.89 18.87 3.15 6.29 
30 68. 24. 10.77 17.63 2.92 5.84 

31 68. 24. 8.52 15.60 2.58 5.16 
32 68. 24. 8.52 15.94 2.64 5.28 
33 68. 24. 7.39 15.72 2.60 5.20 
34 116. 48. 5.14 11.78 1.98 7.91 
35 116. 48. 5.14 11.89 1.98 7.93 

36 116. 48. 1.77 10.91 1.82 7.27 
37 140. 70. 2.35 8.60 1.43 8.36 
38 140. 70. 2.32 8.77 1.46 8.53 
39 188. 86. 1.77 7.62 1.27 9.10 
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Speci- • Area of Depth to 
mea Area of Supplementary Out-to-Out Deck to Supplementary 
Dead Steel Steel Parallel Depth Near c.g.s. of Steel Parallel 
Weight Decking, A to Length Load Point Deck to Length 
(psf) (in./ft) Ag, (in.̂ /ft) (in.) (in.) (in.) 

51.6 0.625 0.039 4.69 4.07 3.66 
52.8 0.625 0. 4.78 4.15 — 

51.7 0.625 0.057 4.70 4.07 3.78 
52.9 0.625 0. 4.90 4.27 — 

52.0 0.625 0.039 4.80 4.17 3.76 

51.8 0.625 0.057 4.77 4.14 3.85 
48.9 0.376 0. 4.50 3.85 — 

52.6 0.376 0. 4.87 4.22 — 

52.4 0.575 0. 5.63 4.12 — 

52.1 0.575 0. 5.69 4.12 — 

51.7 0.575 0. 5.56 4.05 — 

51.4 0.575 0. 5.56 4.05 — 

50.1 0.575 0. 5.44 3.93 — 

51.9 0.575 0. 5.63 4.12 — 

51.1 0.575 0. 5.56 4.05 — 

51.7 0.575 0. 5.56 4.05 — 

48.6 0.575 0. 5.31 4.05 — 

52.4 0.575 0. 5.63 4.12 — 

55.5 0.575 0.0282 5.87 4.36 1.0 
52.0 0.575 0.0282 5.56 4.12 1.0 

51.5 0.452 0. 5.69 4.18 — 

53.1 0.979 0. 5.62 3.99 — 

53.2 0.979 0. 5.56 4.05 — 

53.2 0.979 0. 5.50 3.99 — 

54.8 0.979 0. 5.81 4.30 — 

53.1 0.979 0. 5.56 4.05 — 

53.9 0.979 0. 5.56 4.05 — 

52.5 0.979 0. 5.50 3.99 — 

51.3 0.979 0. 5.38 3.99 — 

52.4 0.979 0. 5.50 3.99 — 

52.1 0.745 0. 5.56 4.18 — 

52.7 0.745 0. 5.56 4.05 — 

52.9 0.745 0. 5.63 4.12 — 

53.3 0.745 0. 5.69 4.18 — 

54.6 0.745 0. 5.81 4.30 — 

52.1 0.745 0. 5.50 3.99 — 

53. ? 0.-74') 0. 5.75 4.24 — 

53]4 0.745 0. 5.75 4.24 — 

53.0 0.745 0. 5.69 4.18 — 
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All longitudinal specimens tested ultimately failed by a shear-bond 

mode of failure except one, that being Specimen 7 which failed by a flex-

ural mode of failure. All specimens reinforced with decking containing 

embossments as their shear transferring device (i.e.. Specimens 1-6 and 

9-39) failed by a shear and bond action consisting of the concrete por­

tion between a load point and the end reaction over-tiding the embossments. 

This shear-bond mode of failure was characterized by a major failure crack 

(usually diagonal) near the load point allowing the separation of the 

concrete portion to occur resulting in a slippage at the ends of the spec­

imens. The shear-bond failure and end slippage was catastropic and occur­

red at the ultimate load of the specimens. No end slippage was evident 

until the ultimate load was reached for all 38 longitudinal slab elements 

failing by shear-bond. 

The addition of supplementary reinforcing did not alter the mode of 

failure. In other words, the addition of WWF was not sufficient to pre­

vent the horizontal slippage between the concrete and steel interface. In 

some instances the steel decking yielded prior to the shear-bond failure. 

Nevertheless the load at which shear-bond failure occurred was always the 

ultimate load unless a flexural failure by rupture of the deck took place 

as for Specimen 7. 

Shear-bond analysis of longitudinal specimens 

Previous tests conducted at Iowa State University (References 24 and 

40) have verified the shear-bond regression analysis for steel-deck rein-

roiCcu slab elements ccnstructcd fro™ steel decV «ectimna like these in 

Slabs 1-4. However,- shear-bond verification was needed for the deeper (3-

inch) type of deck utilized in Slab 5. Longitudinal Specimens 9-18 and 



www.manaraa.com

236 

21-39 in Table 20 were conducted primarily to ascertain the validity of 

the shear-bond regression approach for the 3-inch-deep steel deck cross 

sections. A complete discussion of the behavioral characteristics and 

analysis of these 3-inch-deep slab element specimens is contained in 

Reference (32). Also included in Reference (32) is a discussion of the 

computation of theoretical deflections. Additional discussion in Refer­

ence (32) concerns the computation of design loads obtained from the shear-

bond regression formulations of the experimental data. An example of the 

shear-bond regression of the experimental results is illustrated in this 

section for the longitudinal specimens containing the 3-inch-deep embossed 

deck employed in Slab 5. 

The shear-bond regression analysis of the relationship between 

V̂ ŝ/b̂ dp and dv/f̂ /L*p is shown in Figure 65 for longitudinal Specimens 9-18, 

which were reinforced with the 20-gage Type 0 decking, the same gage 

as Slab 5. Since Type 0 deck has embossments in a fixed pattern, 

then s in the regression relations is taken as unity. As can be seen, the 

regression of the two relationships exhibits good linearity, with all data 

within + 8% of the regression fit. Thus, the shear-bond analysis is 

reasonably valid for deeper deck cross-sections of the type tested. 

The same regression was run for Specimens 22-30 for 16-gage Type 0 

deck and for Specimens 31-39 for 18-gage Type 0 deck. The 16- and 18-gage 

deck shear-bond regression analysis had the same linear relationship as 

the 20-gage did in Figure 65. Only the constants, kĵ  and kg (slope and in­

tercept, respectively), changed. A summary of these constants obtained for 

Type 0 deck for the various gages and these constants for Types I and G 

decks used in Slabs 1-4 is given in Table 21. 
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* SPECIMENS 19 and 20 CONTAINED WWF 

NUMBERS INDICATE LONGITUDINAL SPECIMEN NUMBER 

Figure 65. Relationship between V̂ gS/b̂ dp and ,\/̂ d/L'p for longitudinal 
slab elements with 20-gage Type 0 decking 
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Table 21. Summary of kĵ  and k̂  constants for VygS/bjdp vs. dv̂ /L'p and 

constants kg and for V̂ gS/b̂ dt vs. d/f̂ /L' 

Steel Deck Used 
Deck Nominal Thickness, For Slab 
Type Gage in. kĵ  k̂  No, 

0 20 0,0347 2.97 1,048 5 

0 18 0.0453 3.45 1,202 none 

0 16 0,0595 4.30 1,007 none 

20 0.0369 3,18̂  648̂  1, 2, & 3 

24 0.0252 11,68 12,539 4" 

3̂ H 

0 

All 

All 

thicknesses 

thicknesses 

tested 

tested 

3,10 

3.29 

8,340 

8,292 

Ôbtained from reference (40). 

T̂hese values were based on 22-gage deck regression analysis in 
reference (40). 

'̂ s in the regression relationship equals the T-wire spacing of 
3 inches for this slab. 

Taking the dowel shear as a function of the square of the thickness of 

2 
steel, as done in Reference (40), gives a regression of Vygs/b̂ dt vs 

d/f̂ /L't̂ . Performing this regression on all gages tested, i.e. 22, 20, 

18 and 16, also gives a linear relationship. This composite regression of 

all gages involving Type 0 deck using Specimens 9-18 and 21-39 is shown in 

Figure 66, As can be seen in the figure, the composite regression based 

upon the thickness squared gives a good linear relationship for shear-bond 

analysis. 
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Figure 66. Relationship between V̂ gS/b̂ t̂  and-v/̂ d/L'for all longitu­

dinal slab elements tested containing Type 0 decking 
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Flexural analysis of slab elements 

General strain analysis A general strain compatibility analysis 

was utilized to compute the flexural capacity of the longitudinal one-way 

slab elements. The general strain analysis approach was particularly 

useful for the deeper 3-inch deck specimens and the specimens reinforced 

with Type G deck. The Type G deck was of very high strength (F̂  = 101.6 

ksi) and did not have the stress-strain ductility (see Figure 14) neces­

sary for the usual ACI flexural equation as given by Equation (42). The 

general strain analysis has the advantage of also being able to take into 

account locked-in strains due to casting and shoring conditions. 

Figure 67 summarizes the strain diagrams that were superimposed to 

obtain the flexural capacity for the general flexural strain analysis. The 

first strain diagram in Figure 67 represents the strains in the steel deck 

due to casting. Note this diagram has compressive strains at top fibers 

of deck and tensile strains at the bottom fiber, representing the case for 

a single shore at centerline. The centerline strains are superimposed for 

all cases illustrated in Figure 67, but the critical location occurs near 

CASE! CASE 2 CASES CASE 4 FORCES 
CASTING SHORE REMOVAL APPLIED LOADING TOTAL 

u I Wj "4 

Figure 67. Strain diagrams used to obtain general strain-computed flexural 
capacity of slab elements 
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the location of the applied loading. The second strain diagram in Figure 

67 represents strains due to shore removal, assuming that the force 

exerted on the shore is applied to the composite section. The uncracked 

transformed moment of inertia values were used to determine the strains 

for Case 2 from the expression Mc/Ê I, The third case in Figure 67 rep­

resents strains due to applied loading. If one of the total strains, say 

the bottom strain of deck at rupture, is known then the bottom strain for 

Case 3 is known by arithmetic. The strain diagram for live loading 

(Case 3) is then found by iteration to give equilibrium of the internal 

compressive force and the tensile forces, i.e. until C = T_ + T + T„. 
1 w o 

The compressive force, C, was found from a theoretical stress-strain 

equation of the concrete. The theoretical equation selected was obtained 

by Smith and Young (47) and is given by: 

Evaluating the total compressive force, C, then results in the following 

(44) 

where 

f̂  = compressive cylinder strength, 

e = strain- of concrete Of, taken as 0.002, 
o c 

Gg = strain at top fiber of concrete, and 

f = stress corresponding to strain, 

equation: 

C= b(kd)f̂  f - 4 + ̂  e 

o 
(45) 
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The subsequent location of this C-force from the neutral axis is given by 

kd e 

r  /® \  /®\2 /e\2 

\  CI  

e 
o 

8 
C 

e =''0 ( f ̂  + I 

In order to complete the general strain flexural analysis, one quan­

tity on the total strain diagram in Figure 67 is needed. That one quan­

tity could be any one of the strains indicated in the figure, i.e. e , 
4 

e , e , or e or somewhere in between. For those decks having a steel 
^4 ^4 \ 
stress-strain curve of small ductility, such as Deck 6, the controlling 

strain was selected as the strain at ultimate stress for the bottom fiber 

of deck (e ). If enough ductility is capable of being developed, the 

controlling strain should be taken as = 0.003 as limited by the ulti-
4 

mate strain of the concrete. In between cases depend upon the definition 

of the design ultimate moment. For example, if the design is based upon 

initial yielding of the bottom fibers of deck, then e should be equal to 
h 

the strain at the yield strength of the steel. Likewise, the design could 

be based upon initial yielding of the top fiber of deck, in which case 

e would be the yield strain. If any other criteria other than choosing 
4̂ 

6L is used, then the strain determined for from the general analysis 
\ *4 
should be inspected to see if this strain development is possible as indi­

cated by the steel coupon stress-strain relationship. 

Three-inch-deep deck slab elements Since some of the slab elements 

with 3-inch-deep decking yielded prior to shear failure, the general analy­

sis was performed on the longer elements that were given in Table 20. The 

ultimate moments computed by initial yielding of the bottom fibers of deck 



www.manaraa.com

243 

are shown in Table 22. Also shown for a comparison are the moments based 

on yielding of the top fiber of deck. These moments are then compared to 

the ACl Code moment as given by Equation 42. 

As can be seen in Table 22, a significant difference in the predicted 

flexural capacity exists depending on the method of computations. All 

specimens in Table 22 failed ultimately by a shear-bond mode of failure, 

so the experimental values do not necessarily compare with the computed 

ones. Specimen 21 in Table 22 is of particular significance because it 

exhibited yielding across the entire deck cross section prior to failure. 

The reserve strength in Specimen 21, as indicated by the 1.09 ratio of 

Column 3 to Column 2 in Table 22, can probably be attributed to the strain-

hardening strength and some redistribution of forces in the steel decking. 

All specimens in Table 22 which contained strain gages demonstrated 

yielding of the bottom fibers of decking prior to ultimate shear-bond 

failure. A report of the experimental strain results for these specimens 

is given in Reference (32). 

Longitudinal specimens companion to two-way slab tests The one-way 

slab element specimens tested in this investigation with exactly the same 

span length and shear span as the two-way slab tests were considered as 

companion test specimens. These longitudinal elements were cast companion 

to Slabs 4 and 5. Separate companion slab elements for the steel deck 

used in the first three two-way slabs were not constructed since numerous 

previous tests (40) had been conducted. The particular companion slab 

elements presented in this discussion are Specimens 7 and 8 for Slab 4 

and Specimens 19 and 20 for Slab 5. (See Table 20 for particulars regarding 

experimental load results.) All companion specimens were tested as shown 
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No. 

21 

22 

39 

18 

9 

11 

17 

23 

24 

37 

38 

10 

12 

16 

Computed ultimate moments by general strain analysis 

Ultimate Moment Ultimate Moment Experimental 
By Yielding of By Yielding of Ultimate 
Bottom Fiber Top Fiber Moment Ratio Ratio Ratio 

(ft-k/ft) (ft-k/ft) (ft-k/ft) 3/1 3/2 3/ACI Moment 

5.55 6.41 6.13 1.10 0.96 0.95 

9.46 12.57 10.76 1.14 0.86 0.90 

7.74 9.87 10.72 1.38 1.09 1.09 

7.47 9.15 8.70 1.16 0.95 0.96 

7.15 9.16 7.51 1.05 0.82 0.83 

7.00 9.01 7.96 1.14 0.88 0.90 

7.00 9.01 7.78 1.11 0.86 0.88 

9.41 12.81 10.89 1.16 0.85 0.89 

9.23 12.60 10.90 1.18 0.87 0.91 

7.61 10u03 9.27 1.22 0.92 0.93 

7.61 10.04 9.44 1.24 0.94 0.95 

7.15 9.17 6.81 0.95 0.74 0.76 

7.00 9.01 6.42 0.92 0.71 0.73 

7.03 9.03 6.62 0.94 0.73 0.75 
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in Figure 4 with a span length of 140 in, and a shear span of 45% in. 

Specimens 8, 19, and 20 failed by the shear-bond mode of failure. 

Specimen 7 failed by flexure resulting in an ultimate rupturing of the 

steel deck reinforcement by first tearing the bottom corrugations and then 

tearing of the complete deck cross section. End slip was noted at the 

time of failure for the shear-bond failures. No end slip was observed for 

the one specimen failing in flexure. One significant difference between 

Specimens 7 and 8 was that the depth of Specimen 8 was larger at che fail­

ure location resulting in an increased moment capacity which allowed the 

shear capacity of the spot-welds to be exceeded causing a shear-bond 

failure to occur first. 

Specimens 19 and 20 contained supplementary 6 X 6 X 10/10 WWF placed 

about one inch from the top fiber. The addition of the WWF did not appar­

ently affect the shear-bond behavior. In fact, the results of the shear-

bond calculations for Members 19 and 20 indicate they fall in line with 

the other specimens. This is indicated by looking at where Specimens 19 

and 20 fall on the shear-bond regression curves in Figures 65 and 66. 

A comparison of computed ultimate moment capacities by Equation (42) 

and experimental capacities is shown for the four longitudinal companion 

specimens in Table 23. As can be seen. Specimens 19 and 20 companion to 

Slab 5 reached only an average of 73.5 % of ultimate moment capacity. 

However, Elements 7 and 8 sustained about 91.5% of the computed ACl flex-

ural capacity. This is, of course, unconservative. Specimens 8, 19, and 

20 have a value less than computed due to the premature shear-bond failure. 

The computed ultimate moment for Slab Element 7 warrants further dis­

cussion. The steel deck in Specimen 7 was of high strength steel with 
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Table 23. Computed and experimental moment capacities of companion 
longitudinal slab elements (See Table 20 for load values. 
depths, and areas of reinforcement) 

Computed Experimental 
Total Ultimate Ultimate 

Slab Applied Dead Load Experimental Moment from 
Element Moment = wL̂ /8 Moment = Mp̂  + Mt.t. Eq, (42) Computed 
No. (ft-k/ft) (ft-k/ft) (ft-kips/ft) M̂  

7 .82 9.84 10.75 0.92 

8 .855 10.87 11.99 0.91 

19 .91 6.87 9.57 0.72 

20 .88 6.74 9.01 0.75 

smaller strain capability. In fact, the ACI code equation (42) is not 

valid for the computed ultimate moment capacity of this type of specimen. 

The ACI code assumes a 0.003 strain reached in the concrete due to the 

steel not having sufficient strain ductility to give a normal ductile beam 

type behavior. Specimen 7 failed quite suddenly. 

The general strain analysis as given by Figure 67 and Equations (44), 

(45) and (46) was used to compute the ultimate moment capacity for the 

slab elements in Table 23. The controlling strain for Specimens 7 and 8 

was taken as the strain corresponding to the ultimate steel stress (F̂ ) of 

the steel. The results of these computations are shown in Table 24. An 

additional calculation was performed assuming a yield strain at the bottom 

fiber of deck and is included in Table 24. As can be seen, not much dif­

ference exists between the two controlling criteria. This is due to the 

yield strain being very close to the ultimate strain for this steel deck. 

Tlic significance cf the general strain ultisiste scsent analysis is shown 

by the closeness of the computed value to the experimental value in Table 

24. Thus, a general strain analysis should be performed for the ultimate 
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Table 24. Results of general strain moment analysis for Slab Elements 7 
and 8 

Slab 
Element 

7 

Slab 
Element 

8 IG24* 2G24* 

1. Experimental moment 
capacity (ft-k/ft) 9.84 10.89 8.53* 10.36* 

2. Ultimate computed moment 
assuming ultimate strain 
at bottom fiber 10.43 10.53 6.77 9.63 

3. Ultimate computed moment 
assuming yield strain at 
bottom fiber 10.06 10.16 5.89 9.20 

Ratio 1/2 0.94 1.03 1.26 1.07 

Ratio 1/3 0.98 1.07 1.45 1.12 

 ̂From Reference (40). 

moment computation of slab elements reinforced with a very high strength 

non-ductile type of steel deck. The general analysis may also be neces­

sary for those deeper steel deck configurations which cannot develop over­

all yielding. However, more experimental work is needed to ascertain the 

correct flexural characteristics and definition of failure. 

The general behavior of the slab elements companion to the slab spe­

cimens can be summarized by the load-deflection characteristics. See 

Figure 68. Since the specimens had different widths,the load is in terms 

of kips per foot of width. Included In Figure 68 is Specimen 40122 from 

Reference (40) which was very similar to the slab Specimens 1, 2, and 3 

and had a length, depth, and shear span of 140, 4%, and 46 Inches, respec­

tively. 

As can be seen from Figure 68» there is a significant difference in the 
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Figure 68. Load-deflection characteristics for slab elements companion 
to the slab specimens 
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experimental load-deflection behavior. Slab Elements 7 and 8 exhibited an 

almost straight line load-deflection curve, whereas the other specimens 

esdiibited some ductility. Specimens 19 and 20 were somewhat stiffer with 

little ductility, whereas Specimen 40122 was much more ductile. The load 

at which first cracking was observed is shown for those cases when obtained. 

As an indication of the amount of deflection, the L/360 limitation is indi­

cated in Figure 68. 

Specimens with variable amounts of supplementary reinforcing 

As a preliminary attempt to ascertain the effect of the supplementary 

reinforcement (WWF) on shear-bond failure behavior, six specimens wer<i 

cast. These specimens contained the same WWF as used in Slabs 1 and 2. 

The basic experimental results of these specimens were presented in Table 

20. A comparison of the average results of each pair of identical speci­

mens containing WWF to those containing no WWF is summarized below in 

Table 25. Since the area of supplementary steel was not appreciably dif­

ferent for those four specimens containing the WWF, an average of all four 

specimens containing WWF was compared to those not containing the WWF. As 

can be seen in Table 25, the load capacity was apparently increased by 

10.7%. 

Table 25. Experimental effects of elements containing WWF 

Average of 
Specimen 

Area of WWF Parallel 
to length, A , 
(in.2/ft) 

Average Total 
Applied Load 

(kips) 

% increase of 
lines 2 and 3 
over line 1 

2 and L n. irv 1 

3 and 6 

1 and 5 0.039 

0.057 

11.35 

11.45 
10.7 
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The influence on the shear-bond regression analysis can be observed 

by comparing these load values with the previously obtained shear-bond 

regression data (obtained from Reference 40). This is done in Figure 69. 

The values shown were computed neglecting the area of WWF (which is small 

compared to deck area) in the computation of the reinforcement ratio, p. 

As can be seen, the slab element specimens containing the WWF fall rea­

sonably close to the previously plotted regression fit, but reflect about 

the same increase as shown in Table 25. Thus, the addition of the supple­

mentary reinforcing did not appreciably affect the shear-bond strength by 

more than about 11 %. 

The strain gages placed on the six slab elements showed reasonably 

good linear characteristics across the cross section of the slab elements 

at most stages of loading. No yielding of the fibers of any part of the 

steel cross section were observed. The maximum strain near ultimate for 

any of the observed strains was only 770 microinches on the bottom fiber 

of steel deck. 
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Figure 69. Illustration of shear-bond strength of slab elements con­
taining WWF compared to previously obtained shear-bond 
analysis 
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CHAPTER 7. THEORETICAL ANALYSIS OF STEEL-DECK REINFORCED SLABS 

General Remarks 

Four methods of analysis were employed to Investigate the ultimate 

strength and behavioral characteristics of the full-scale two-way slab 

tests. These methods were discussed in detail in Chapter 2 and include 

the following; 

1. Yield-line theory, 

2. Shear-bond regression analysis, 

3. Orthotropic plate theory, and 

4. Curve fitting of the deflected surfaces as applied to orthotropic 

theory. 

The yield-line theory and shear-bond analysis methods were used as 

a means of ultimate strength determination, whereas the orthotropic 

theory and curve fitting techniques were employed as a means of predicting 

and investigating the behavioral characteristics of deflections and force 

distributions throughout each of the slabs. The quantitative results of 

these theoretical means of analyses compared to the experimental results 

are presented in this chapter. 

Application of Yield-Line Analysis to Test Slabs 

Mechanisms considered 

The procedure for yield-line analysis was discussed previously in 

Chapter 2. The discussion in this section is concerned with the applica-

•  -  '  —  _  «   ̂ C ^  ,9  ̂ 3 ^  # —  —  M  —  ̂  ^  ̂  J »  A .  —  A  ^  Jt — »  A  ^  M  A #  M  1  ̂M  — M  _  J  cxuu Ui. uue uu utic c.iwyca.AiiiciiuoA ucou otawo 

the comparison of the computed results to the experimental results. 

The application of yield-line analysis involved primarily four collapse 
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mechanisms. These collapse mechanisms are-shown in Figure 70. The mech­

anism indicated in Figure 70a was found to be the controlling mechanism 

for all five test slabs. This result was substantiated by the observed 

crack patterns on both top and bottom surfaces of all slabs tested. See 

crack patterns and discussion in Chapter 5. 

The ultimate applied load, P, at each of the four concentrated load 

points was computed using each of the collapse mechanisms shown in Figure 

70, The computed P value for Figure 70a was found from the following ex­

pression: [See also Equation (8)] 

m 
was (] J ) F- 3cx + 4aY - 3v + 3] 

6 y + if + 

2PaSL 

HP 

(47) 

Likewise, the P value for Figure 70b was found from 

-Mi-f)  m = \2 3/  ̂ 4Px 

p 2 +  4  2 L ^ a ' B '  +  2 V » )  
\OLp / 

(48) 

the P value for Figure 70c was found from [See also Equation (5)] 

m = 3a + iay -3^+3) ̂ _ and (49) 

6(|jlp v + a) (nP "Y + a) 

the P value for Figure 70d was found from [see also Equation (11)] 

P̂  = 2nn(l + i)ViI'  ̂ (50) 

Note that the uniform load, w, is considered to be negligible in Figure 70d, 

A HpvftTopment of Eauatlcns (47). (49) and (50) is contained in 

Chapter 2. 

A summary of the computed ultimate loads, P̂ , for each of the four 
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Figure 70, Collapse mechanisms utilized In ultimate strength determina­
tion by yield-line analysis 
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primary collapse mechanisms is shown in Table 26. As can be seen, the 

lowest computed ultimate load values were obtained from the mechanism 

shown in Figure 70a. These computed values can be compared to the exper­

imental ones ̂ ich are also contained in Table 26. 

Table 26. Computed ultimate concentrated loads for the various collapse 
mechanisms shown in Figure 70 

Computed (kips/load pt.) by mechanism in: 

Slab 
No. 

Exper. P 
(kips/ " 
load pt.) 

fui* 

Fig. 70a 

t t  

L in 

Fig. 70a 
(ft) 

fu" 

Fig. 70b 

P in 
u 

Fig. 70c 

P in 
u 

Fig. 70d 

1 13.7 15.26 8.4 19.5 19,6 22.8 

2 15.5 17.32 10.1 19.3 19.3 33.0 

3 8.8 12.64 8.3 16.4 16.5 17.7 

4 14.4 19.83 9.4 23.2 23.2 34.8 

5 9.4 11.66 7.4 17.2 17.3 14.6 

The experimental values compare very closely to the computed values 

for all slabs except Slab 4 which had a very high strength steel deck 

(Fy = 101.6 ksi) which was not stressed to its ultimate flexural yielding 

capacity along the yield lines. It should be emphasized that none of tha 

five slabs actually failed by the flexural mode as would be predicted by the 

yield-line theory. All five slabs failed by the shear-bond failure mode. 

However, the computed values in. Table 26, when compared with the 

experimental values, demonstrate the possible validity of the yield-line 

theory «« « rfeBign tool. The yield-line theory might be particularly 

useful for floor systems constructed with multiple panels since the 

adjacent floor panels would provide restraint against end-slip and 
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subsequent shear-bond failure. This might have delayed shear-bond failure 

until overall yielding along the yield-lines of the collapse mechanism 

took place. Thus, it is concluded from the close correspondence of the 

theoretical yield-line calculations with the experimental load tests that 

the yield-line theory provides a good potential for predicting the flexural 

capacity of two-way slabs reinforced with corrugated cold-formed steel 

decking. 

I I  

The effective width as defined by the distance, L , in Figure 70a 

compares favorably with the effective width as observed from the top and 

bottom surface cracking. See Figures 32 and 34. This width also compares 

favorably with that obtained from the reaction measurements as given in 

Chapter 5. 

Methods of computation of m, um. and im and assumptions 

The significance of the computed flexural collapse values, as given in 

Table 26, warrants further discussion as to the methods of obtaining the 

flexural moment capacities of m, p.m, and im for the longitudinal, trans­

verse, and negative moments, respectively. The detailed discussion of the 

means of obtaining each of these flexural capacities was provided in connec­

tion with the companion longitudinal and transverse slab elements in Chap­

ter 6. The final basis for the computations used to arrive at the computed 

values in Table 26 will be discussed. 

A complete summary of the computed flexural values used for Table 26 

is presented in Table 27. The longitudinal moment, m, refers to that 

moment capacity on a cross-section perpendicular to the steel deck corru­

gations, i.e. the strong direction moment. The transverse moment, ̂ m, is 

the moment capacity on a cross-section parallel to the corrugations, i.e. 



www.manaraa.com

257 

Table 27. Computed flexural capacities m, 
two-way slab specimens 

|im, and im for the five 

Slab 
No. 

Longitudinal 
Moment, m 
(ft-k/ft) 

Transverse 
Moment, Jim 
(ft-k/ft) 

Negative 
Moment, im 
(ft-k/ft) 

Coefficient 
Orthotropy, 

of Coefficient 
[X i 

1 9.55 1.16 0.870 0.122 0.091 

2 8.62 2.73 0.738 0.316 0.086 

3 8.18 0.80 0.802 0.098 0.098 

4 10.68 2.40 0.986 0.225 0.092 

5 8.69 0.55 0.55 0.063 0.063 

the weak direction moment. As can be seen in Table 27, the relative 

strengths between these two moments, given as the coefficient of ortho-

tropy, p, varies from 0.063 to 0.316. 

The longitudinal moment capacity, m, was computed using the general 

strain analysis presented in Figure 67 of Chapter 6. This ultimate flex-

ural capacity was obtained by establishing the maximum compressive concrete 

strain as 0.003 for Slabs 1, 2, 3, and 5. The corresponding strain at 

each steel layer was then found so as to create equilibrium of the internal 

tensile and compressive forces. After equilibrium was established, summa­

tion of moments was taken about the compressive force. The tensile forces 

consisted of the steel decking and the supplementary steel reinforcements 

and the strength of the concrete when the strain was less than that to 

cause normal modulus of rupture stress (considering a uniaxial case). In 

addition, the steel deck tensile force was divided into three layers con­

sisting of the top plate elements, web plate elements, and bottom plate ele­

ments. Kee the accompanying discussion to Figure 67 contained in Chapter b. 

The use of the maximum concrete compressive strain of 0.003 was found 

to give satisfactory moment capacities for Slabs 1, 2, 3, and 5, 
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particularly since the steel deck reinforcement in these slabs had suffi­

cient ductility to develop such a strain compatibility. However, the 

steel deck in Slab 4 had insufficient ductility to develop a concrete 

strain of 0.003. Thus, for Slab 4, the longitudinal moment capacity, m, 

was based on equating the strain at the bottom steel deck plate elements 

to the strain to cause yielding of 101.6 ksi. Consideration was also 

given to assuming that the bottom plate elements had reached the strain 

corresponding to the ultimate stress of the steel. Doing this changed 

the moment capacity from 10.68 to 11.06 ft-kips/ft. Further consideration 

of the Slab 4 longitudinal moment capacity was given, to letting the top 

plate elements of the deck reach the yield strain. However, this resulted 

in a strain at the bottom plate elements greater than the ultimate strain. 

Based upon the above analysis of the longitudinal moment capacity 

studies, it is recommended that the general strain analysis be used. A 

maximum concrete compressive strain of 0.003 should be assumed, except 

for cases when the strain in the bottom fiber of the steel exceeds ultimate 

(such as exists for the high strength, low ductility steels). For such 

cases involving high strength steels, it is recommended that the general 

strain analysis be used with the requirement that the strain at the bottom 

plate elements be equal to the yield strain. Another possibility is that 

the strain of the top plate elements be limited to the yield strain, pro­

viding that in this instance the strain compatibility condition does 

not indicate a strain at the bottom greater than ultimate. For those 

cases involving only steel ùeckliïg ââ uliê LêuàlOii cêlafwïûêm«ûu, âûu Cwë 

Steel is of sufficient ductility for the 0,003 criteria, then the equation 
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is adequate. Here the steel-deck cross section is considered as centered 

at the c.g.s. of the deck. 

The transverse moment capacity, jim, was also computed using the gen­

eral strain analysis procedure as described above and in Chapter 6. 

However, the criteria of 0.003 was not valid for any of the transverse 

moment capacities. The transverse capacity of Slabs 1 and 2, with the 

welded wire fabric supplementary reinforcement, was based upon the general 

strain analysis letting the strain reach a level corresponding to the ul­

timate strain of the welded wire fabric. This was compared with the case 

where the strain was assumed to reach yield, and about the same computed 

ultimate load was obtained for the slab. This was because little differ­

ence exists between the two îm's due to the high strength steel with a 

small amount of ductility. (See Figure 14.) 

The transverse moment capacity, |im, of Slab 4 was based on the strain 

at the limiting bond stress of the splices existing between the sections 

of the transverse deformed wires which were connected to the steel decking. 

The general strain analysis was used letting the strain at the splice of 

the transverse wires prevail as discussed in connection with transverse 

slab elements in Chapter 6. 

The transverse moment capacity for Slabs 3 and 5 containing no supple­

mentary reinforcement in the tension zone was determined on the basis of 

the strength of the concrete alone. The depth considered as effective was 

that as found from the transverse slab element analysis discussed in Chapter 

6. Thus, the transverse capacity for Slabs 3 and 5 was determined by using 

a gross moment of Inertia for a depth from the top of slab to the top of 

deck together with the modulus of rupture strength of the concrete as given 
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by the following expression; 

p m = - ^  ( 5 1 )  

The negative moment capacities, im, of all the slabs were found the 

same way as p.m for Slabs 3 and 5. That is, the negative moment capacity 

was based only upon the strength of concrete employing Equation (51). 

Two depths were considered in computing in Equation (51). One depth 

was from the top of slab to the top of the decking, whereas the other depth 

was taken from the top of slab to the c.g.s. of the decking. The latter 

was thought to be closer to the true it when the added benefits of the 

torsional resistance and the added transverse moment increase due to bi­

axial compressive stress in. the perpendicular direction were considered. 

However, as a conservative estimate of im, the depth of the top of the 

corrugations was chosen and used for the computations in Table 26. 

Ultimate loads, P̂ , were computed using several values of im and it 

was found that the particular controlling mechanism was somewhat sensitive 

I I  

to the strength of im. The difference in P values and widths, L , for the 

controlling mechanism for the two different im-computational methods is 

demonstrated in Table 28. As can be seen,the values using im for a depth 

to the top of the deck result in computed values closer to the experimental 

ones. However, the slabs in this investigation did not reach the full flex­

ure capacity. Slabs which fail by flexure may be better predicted using a 

computed im for a depth to the deck c.g.s., but in lieu of such experimental 

results, the more conservative im for a depth to the top of the deck is 

recommended. 
I I  

Also shown in Table 28 are values of and L if im were considered as 
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having a value of zero. As can be seen, the negative moment capacity, im, 

could also be considered conservatively as having a strength equal to zero. 

However, since no complete flexural failures were achieved, a proper im 

verification was not found. 

Table 28. Effect of change in negative moment capacity, im, on the 
mechanism in Figure 70a 

im by depth 
above deck 

im by depth 
above c.g.s. im = 0 

Slab 
No. 

Pu 
(kips/load pt.) 

L" 
(ft) 

Pu 
(kips/load pt.) 

L" 
(ft) 

Pu 
(kips/load pt.) 

L" 
(ft) 

1 15.26 8.4 16.62 9.0 12.67 7.3 

2 17.32 10.1 18.26 10.5 15.84 9.4 

3 12.64 8.3 14.02 9.0 10.09 7.0 

4 19.83 9.4 20.71 9.7 17.53 8.5 

5 11.66 7.4 14.2 8.6 9.48 6.4 

Analysis of Test Slabs Using One-Way 

Shear-Bond Computations 

Each test slab was analyzed as a one-way slab subjected to an equiva­

lent uniform load. The one-way shear-bond regression method of analysis 

as discussed in Chapter 2 was employed to give approximate ultimate uni­

form loads. These computations give an indication of the effectiveness of 

approximating the concentrated loads by a uniform load for the five full-

scale slabs tested. This served as a preliminary means of analysis to that 

contained in the next section. 

The experimental ultimate load at the four concentrated load points 
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was converted into an equivalent uniform load distributed over an area be­

tween the slab supports (i.e., 15.5 ft by 11.6 ft). This equivalent 

uniform load is indicated in Table 29. As can be seen from the different 

uniform load values, the slabs with more transverse supplementary steel 

withstood a larger load, except for Slab 4. See Table 13 in Chapter 5 for 

the amount of supplementary steel and other pertinent slab variables. 

Table 29. Equivalent ultimate uniform and predicted one-way shear-bond 
loads 

Slab 
No. 

Ultimate experimental 
load per load point 

(kips/L.P.) 

Equivalent ultimate 
uniform load 

(psf) 

Calculated shear-
bond uniform load, 

(psf) 

1 13.7 305 235 

2 15.5 345 207 

3 8.8 196 215 

4 14.4 321 450 

5 9.4 209 241 

The calculated uniform load shear-bond values given in Table 29 were 

obtained from the following equation contained in Reference (40): 

\  ̂ (v) + (52) 

The notation of this equation is the same as that presented previously 

for Equation (1) in Chapter 2. The effective depth, d, in Equation (52) 

was taken as the overall slab average depth to the c.g.s. of the deck. 

The constants k̂  and kg are tabulated in Table 21 in Chapter 6. 

^ ^ 1 1 ^ é» £ «««•• O 1 A tn M O M J C ^ 1 M Oft M mm m  ̂ J mm Jt  ̂  ̂̂  
^ V  A .  V A  w o  ̂  w t  w  w  o  j L  e & w  x c -  c & t  c  o  J l .  ̂  x w o i i  L .  

since they are very close to the experimental ultimate loads. Thus, the 

one-way she&r-bond method appears to adequately predict the load for slabs 
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without supplementary reinforcing. Slab 5 had 6 X 6 X 10/10 WWF, but the 

fabric was located in the top part of slab, negating its benefit for pos­

itive reinforcing. However, it is felt that this close prediction of load 

for Slabs 3 and 5 is somewhat coincidental with the pattern of loading and 

span length used. Other concentrated load patterns may or may not give 

the same results. Nevertheless, the predicted values for Slabs 3 and 5 

are quite adequate. The over prediction is due probably to the effects of 

cycling for these two slabs. 

The equivalent uniform load shear-bond calculation did not give ade­

quate results for Slabs 1 and 2. (See Table 29.) This is attributed to 

the supplementary reinforcing used in these two slabs. The failure of 

Slab 4 to reach even its one-way shear-bond predicted load is attributed 

to the shear on a beam strip transverse to the corrugations. This trans­

verse shear placed additional shear on the spot welds holding the T-wires 

in place, thus weakening the longitudinal shear capacity. This reduction 

is discussed later in this chapter. 

An approximation for the predicted shear-bond value can be made for slabs 

containing supplementary reinforcing through the use of the yield-line analysis. 

That is, the predicted values for Slabs 1 a ad 2 multiplied times the ratio of the 

predicted load of Slab 1 or 2 to that of Slab 3 gives a fairly close ap­

proximation. This is based on the supposition that the yield-line theory 

calculations take into account the flexural transverse force distribution 

benefits due to the supplementary reinforcing transverse to the corruga­

tions. Table 30 contains the results of this proportioning. 

The proportioned results in Table 30 are quite conservative and 

serve only as an approximation due to the addition of the supplementary 
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Table 30. Proportioned (by yield-line calculations) shear-bond predicted 
uniform loads 

Equiv­ Calcu­ Predicted 
alent lated Value of 
Experi­ Shear- Uniform 
mental bond Yield-Line Load (by 
Uniform Uniform Predicted Proportional Propor­

Slab Load, Load, Load, Multiplica­ tioning) 
No. (psf) (psf) (kips/L.P.) tion Used (psf) 

1 

2 

3 

reinforcing. The approximations presented in Tables 29 and 30 serve only 

as one-way approximations for a concentrated loaded system converted into 

equivalent load. It should be emphasized that these types of calculations 

may not be sufficient for all the more common cases of concentrated loads 

encountered in practice. The method in the next section utilizing a 

shear-bond approach based on an established yield-line collapse mechanism 

is believed to be much more general and applicable to a wide range of 

loading configurations and shapes of slabs. 

Application of Shear-Bond Analysis in 

Conjunction with the Yield-Line Analysis 

Concept of application 

A method of analysis which combines the shear-bend approach and the 

yield-line theory approach provides a means of predicting the ultimate 

strength of two-way slabs. Each method of analysis was described separately 

in Chapter 2. However, the concept of applying the two together as a means 

305 235 15.26 (235) = 284 

345 207 17.32 (207) = 284 

196 215 12.64 
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of arriving at the ultimate slab strength for concentrated loads is dis­

cussed in this section followed by calculated results and recommendations 

for design. This application of shear-bond analysis in conjunction with 

the yield-line analysis was considered the primary theoretical means of 

analysis used in this investigation. 

The concept involves first establishing ..the proper yield-line mech­

anism and then applying the principles of the shear-bond approach to the 

effective load-carrying segment established by the mechanism. Figure 71 

shows the collapse mechanism and the effective load-carrying segment used 

for analysis of the five two-way slab tests. 

The collapse mechanism shown in the top of Figure 71 was established 

by conventional yield-line theory formulation and is also the same con­

trolling yield-line mechanism shown in Figure 70a. Ordinarily, this 

yield-line mechanism would be used to predict a flexural type of slab 

failure. However, for this combined analysis the yield-line theory was 

used only to establish the collapse mechanism. Even though the five test 

slabs failed ultimately by shear-bond, the obseirved crack patterns (pre­

sented in Chapter 5) still conformed with the yield-line collapse mechanism. 

Therefore, the yield-line theory was used to define the crack pattern for 

the collapse mechanism and subsequently establish the effective load-

I I  

carrying segment of width L in Figure 71. 

II 
Determination of the effective width, L , of the load-carrying seg­

ment permitted computation of the vertical shear forces resisting the down­

ward applied loads for the load,-carrying segment. The two shear forces 

computed were and V̂ , shown in Figure 71. The shear force was com­

puted using the shear-bond regression analysis applied to a one-way slab 
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collapse 
mechanism 

0 - 2câl" 

corrugations 

load-carrying 
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one-way 
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.(l" - 4) 
p 

-im 
r-' 

4' ^ 2 1 
p 

-im 
r-' -1 r 

1 
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Figure 71. Collapse mechanism and effective load-carrying segment used 
for analysis of five full-scale slab elements 
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element parallel to the deck corrugations as shown by section A-A in 

Figure 71. This longitudinal shear, was computed using a modified 

version of the shear-bond Equation (1) to account for the average shear 

t l  

span over the shear-bond failure region of the L width. The trapezoidal 

section over which shear-bond failure was assumed to occur is designated 

in Figure 71 by region marked ABCD. The modified version of Equation (1) 

for computing is presented in the next section. 

The shear force was obtained from using a one-way slab element 

transverse to the steel deck corrugations, as shown by Section B-B in 

Figure 71. This transverse shear force, V̂ , was obtained by two different 

criteria and the lower value of the two was taken as the controlling 

force. One criteria was based on the shear strength of the concrete 

above the neutral axis, assuming a cracked section not contributing shear 

below the neutral axis. 

The second criteria was based on the statical shear reaction of a 

II 
transverse slab element of length, L . This shear reaction was obtained 

by simple one-way beam statics as that reaction existing on the end of 

the element when subjected to its flexural capacity. 

The controlling shear force was the smaller of the concrete shear 

strength or the statical shear at maximum transverse flexural capacity. 

Additional shear contributions ftom aggregate interlocking and shear.fric­

tion in a cracked section are neglected. 

The predicted ultimate concentrated load at each load point was ob­

tained bv addlns V_ and V_ . The calculatinne of V and V were tTitm haeed 
i L - - - .j.  ̂ - -

on a per load point computation to compare to the experimental load at each 

load point. The results of the computations and the corresponding details 
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are presented next. 

Methods for computations and results 

The results of the computations and some of the other pertinent items 

for the application of the shear-bond analysis in conjunction with the 

I t  

yield-line collapse mechanisms are presented in Table 31. The L length 

values in the table are the same ones as given previously in Table 26 for 
tl 

the collapse mechanism in Figure 70a. Thus, the computation of L is based 

on those values and methods indicated in the previous section "Application 

of Yield-Line Analysis to Test Slabs." 

The third and fourth columns in Table 31 give two average depths that 

were used in the computations. The average overall depth of the slab was 

I I  

used in the yield-line analysis to establish L , the width of the effective 

load-carrying slab element. The computations of and were based on 

the effective load-carrying element of the slab, and thus the average depth 

of this element was used to compute the vertical transverse and longitudinal 

shears. Likewise, the |im transverse moment capacity, given in the fifth 

column of the table, is based on an average depth for the slab element of 

I I  

width, L . Thus, this |im is slightly different than that given in Table 

27 which was used for the yield-line analysis of the full slab. 

The two criteria for computing the transverse element shear, V̂ , are 

given by columns six and seven in Table 31. The force in column six 

was based on assuming a concrete shear strength of 2̂ /̂  for a depth above 

the neutral axis neglecting any shear contribution below the neutral axis. 

The neutral axis was determined from conventional cracked transformed sec­

tion concepts. The transformed area of steel utilized in these neutral axis 
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Table 31. Computed values for the application of the shear-bond analysis in conjunction with the 
yield-line collapse mechanism 

1 Î! 3 4 5̂  6 7 8 9 10 11 
Avg. depth lam for 

8 10 

Average of load- load-
V 

CALC P̂  
overall carrying carrying 

12 
BLum V + V 

Ratio 
L", See slab slab slab 12 L" - 4 Eq. 56 T L EXPP of 

Slab Fig. 71 depth element element 1000 (kips/ (kips/ (kips/ (kips/ CALC 
No. (ft) (in.) (in.) (ft-k/ft) (kips/L.P.) L.P.) L.P.) L.P.) L.P.) EXP 

1 8.4 4.83 5.04 1.24 4.12 3.26 8.52 
(9.37) 

11.78 
(12.37) 

13.7 0.86 
(0.90) 

2 10.1 4.62 4.75 2.86 5.65 5.42 8.97 
(9.87)* 

14.39 
(15.29)* 

15.5 0.93 
(0.99) 

3 8.3 4.63 4.73 0.86 0.0 2.30 7.31 7.31 8.8 0.83 

4 9 , 4  4.68 4.90 2.56 7.01 5.49b 
3.88 

16.29b 
11.52 

21.78b 
15.40 

14.4 

5 7 . 4  5.44 5.46 0.56 1.90 1.90 6.57 8.47 9.4 0.90 

*Basnd on a 10 percent increase in to account for increased shear-bond resistance of UWF. 

b 
Based on an elliptical interaction of and on T-wire spot weld strength. 
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computations was only that of the supplementary reinforcing consisting of 

either WWF or T-wires in all slabs except Slab 3. The corresponding neu­

tral axis depths, d̂ , were 0.459, 0.683, 0.0, 0.814, and 0.208 inches, 

respectively, for Slabs 1-5. A value of zero for the depth to the neutral 

axis was conservatively assigned to Slab 3, since no transverse supple­

mental reinforcement existed for this slab. 

The resulting computation for in column six in Table 31 was based 

on the ultimate shear of a concrete beam as recommended by the ACl Building 

Code (2). This is given by the term where the 0 factor was not in­

cluded. In this case, the beam width per load point was pL/2 (Figure 71). 

With PL in feet, in psi, d̂  (in place of d) in inches, and in kips 

per load point, the resulting expression for values in column six is given 

by Equation (53). 

12 VF 

= looS 

The other criteria for as given in column seven of Table 31 was 

based on the shear developed in a beam strip at the time the beam element 

reached its flexural capacity. Section B-B of Figure 71 illustrates a 

II II 
transverse beam segment with a resulting shear span (L - 4)/2 where L is 

in feet and the four represents the distance between load points. Taking 

times the shear span and equating this to the transverse moment capacity, 

p,m , results in the following expression per foot of width for V̂ ; 

V™ = (54) 
L - 4 

For a beam width per load point of pL/2, the resulting equation from which 

values in column seven were computed is 
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V_ = (55) 
L - 4 

I t  

where L and PL are in feet, and p,m is in ft-kips/ft. The computation of 

in Equations (54) and (55) conservatively neglects the negative moment, 

- im, on the end of the transverse strip. 

The computation of in column eight of Table 31 is based on the one­

way shear-bond strength of s beam segment parallel to the deck corrugations. 

This beam segment is shown by section A-A in Figure 71. The shear-bond 

failure for the five slab tests was assumed to occur over the trapezoidal 

region marked ÂBCD in Figure 71. This was verified by the experimental 
I I  

results since end slip occurred over the region of L . Equation (1) for 

I 
shear-bond was modified to account for an L shear span over a beam width 

I  

of 4 ft (distance between load points) and to account for a L /2 shear 

span in the triangular regions bordering AB and CD in Figure 71. 

Taking the shear-bond expression [Equation (1)3 for each of the two 

triangular regions (see Figure 71) with a shear span of L'/2, and for the 

« 

rectangular region with a shear span of L , and rearranging terms and 

combining for the three regions results in the following equation which 

was used in computing column eight: 

I I  

V = dL 
L 2000s 

k̂ d,̂  
(1 + 2oO + k.p 

L L 
(56) 

I t  

where the notation is the same as for Equation (1) except that L is the 

effective width in inches and a is a non-dimensional length parameter as 

shown in Figure 71. The regression constants used in Equation (56) were 

obtained from the one-way slab element tests and were presented previously 

in Table 21 in Chapter 6. The term "s" in Equation (56) was unity for all 
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slabs except Slab 4, where s was 3, since the T-wires in Slab 4 were 

spaced on 3-inch centers. The units on the quantity given by Equation 

(56) are kips per load point of applied load. 

Dead load of the slab was considered in the above computations for 

I t  I I  

L , V„, and . The yield-line calculations for L included the effect of 

the uniform dead load as can be seen from Equation (47) where w is the 

slab dead weight. In computing the shear capacities and the dead 

load was assumed to be carried by the longitudinal beam element. Equation 

(56) for Vt is for live load only without the dead weight added. The con­

stants and k̂  were determined on the basis of applied load only. The 

live load capacities for were not reduced by the dead load since the 

longitudinal strip was assumed to carry the dead weight. Thus, all com­

puted values are for the amount of applied load. 

Once V„ and shear forces were determined, the predicted ultimate 

live load at each load point was found by adding the lower of the two 

forces to the forces. This predicted load is shown in the ninth column 

of Table 31. The actual experimental ultimate load per load point is shown 

in column ten followed in column eleven by the ratio of calculated to ex­

perimental, representing the degree of closeness of the computed to actual 

values. 

As can be seen by the eleventh column, the computed values compare 

quite closely to the experimental ones, except for Slab 4 which is subse­

quently discussed. Slab 3 is the next furthest from predicting the correct 

failure lead. A sore correct predicted load fnr Slab 3 would probably be 

achieved by adding a V̂ , of 2.30 using Equation (55) to the of 7.31, thus 

giving a predicted ultimate of 9.61 kips per load point. The zero value 
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of from Equation (54) for Slab 3 Is obviously Incorrect, since some 

shear contribution of the concrete must exist. However, since no shear 

failures were obtained from any of the transverse one-way slab specimens, 

only a conservative approximation of by column six was made as dis­

cussed with Equation (54). The 9,61 klp-per-load-point value Is nine 

percent over the actual experimental value of 8.8. Undoubtedly, the high 

cycling load that was used (72.7 percent of the ultimate) weakened the 

slab severely. However, due to lack of actual test data to substantiate 

the 9.61 figure, the more conservative value is used for the predicted 

ultimate load of Slab 3. 

The numbers in parenthesis in columns eight, nine, and eleven for 

Slabs 1 and 2 represent the predicted values if the effect of the supple­

mental reinforcing is considered for the shear-bond strength, V̂ . Chapter 

6 indicated that for the slab elements containing supplementary rein­

forcing placed on the steel decking, the benefit in shear-bond strength 

was a little over ten percent. The values in parenthesis in column eight 

for Slabs 1 and 2 represent a ten percent increase due to the additional 

reinforcing. Thus, the ratios In column eleven of 0.90 and 0.99 are a 

better indicator of the predicted strength. 

The ratio values of 0.90, 0.99, 0.83, and 0.90 for Slabs 1, 2, 3, and 

5 are considered very good and within normal concrete experimental varia­

tion. These values are on the conservative side due to strength benefits 

such as torsional resistance between the longitudinal and transverse ele­

ments, aggregate interlocking, dowel shear in the force (dowel shear in 

is taken into account), and deck stiffness. 

The ratio of 1.51 for Slab 4 in column eleven is considered as 
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incorrect. This is due to the shear forces and both acting on the 

spot welds connecting the T-wires to the steel decking. The values in 

columns seven, eight, nine, and eleven (denoted by a superscript b for Slab 

4) represent approximate reduced values to account for the interaction of 

V and V on the spot welds. The reduction in V and V values was accom-
T L i. 1» 

plished by reducing the resultant as given by the expression+ (V̂ )̂ . 

Figure 72 graphically shows how this reduction for Slab 4 was made. Figure 

72a indicates the vertical shear forces on the spot weld which connects 

the T-wire to the steel deck. The reduction as shown in Figure 72b was 

based on the use of an elliptical curve to represent the interaction 

strength of and on the spot weld strength. As can be seen in column 

eleven in Table 31, this method predicted the true ultimate load with an 

error of only seven percent. 

The procedure shown in Figure 72 involved the following steps: 

1. Plot and on x- and y-axls, which forms a rectangle having 

diagonal equal tô V̂ )̂  + Construct an ellipse with as 

one-half the minor axis and as one-half the major axis. 

2. Define 0 = tan ̂  V̂ /V̂  which establishes the reduced resultant 

strength, R̂ , on the elliptical interaction curve, 

3. The reduced resultant strength, R̂ , can then be computed from 

Equation (57) using the 

= 2 2 — (57) 
sin 9 + cos 9 

I r 
4. The values and can be obtained as 

Vt  = RgSin 0 
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SPOT WELD -T-WIRE 

-STEEL DECK RESULTANT 

A) REACTION OF VJ AND V|_ FORCES 
ON T-WIRE SPOT WELD 

y 

B) ELLIPTICAL INTERACTION APPROXIMATION OF REDUCED 
\I* AKirv \i* OLJCÀD ̂ ADA/~i<rir(> 

Figure 72. Elliptical interaction used for reduction of and shear 
forces for Slab 4 
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= R cos 9 

5. The new ultimate predicted live load-carrying capacity of Slab 4 

I I 

is then V„ + V_. These reduced values are indicated by the 

superscript b for Slab 4 in Table 31. 

The computation of the ultimate load by this method is recommended 

for such slabs where the and forces are concentrated on a single 

spot shear transferring device. It should be recognized, however, that 

the method is based on only one test result and needs further verifica­

tion. 

Recommendations for design 

The application of the shear-bond analysis in conjunction with the 

yield-line method resulted in good agreement between predicted ultimate 

loads and corresponding experimental values. See Table 31. It is possible 

that the method can be used for a variety of loading configurations and 

slab sizes. 

The overall design procedure relative to steel-deck reinforced slab 

systems can be summarized by the following steps: 

1. Compute the ultimate load for flexural failure by conventional 

yield-line procedures, 

2. Using the collapse mechanism of Item 1, compute the vertical 

shear forces and on the effective load-carrying element 

of the collapse mechanism, 

3. Obtain the ultimate load based on shear and shear-bond by simply 

adding the and componencs, 

4. Compute punching shear failure for concentrated loads by recommen­

dations contained in ACI Building Code (2), 
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5. The ccmputed ultimate load is taken as the smallest value ob­

tained from Items 1, 3, and 4 above. Apply appropriate load fac­

tors (2) to obtain design live loads, and 

6. Compute deflections and check against limiting values. 

The above procedure should prove to be a conservative approach for 

most building floor systems reinforced with steel decking, especially 

continuous floor slab systems. The yield-line analysis can take into 

account the development of negative moments over continuous supports. 

However, the shear-bond analysis used for does not take into account 

the blocking action of the neighboring slab panel. Blocking action can 

conceivably help to prevent shear-bond failures from occurring. However, 

further research is needed to actually determine the benefits that can 

be achieved. 

Comparison of Test Slabs to Orthotropic Plate Theory and Behavior 

Deflection comparisons 

Theoretical deflections and force distributions for each of the five 

two-way slab tests were obtained from the orthotropic plate theory as de­

scribed in Chapter 2. The orthotropic computations were all performed by 

use of computer programs adapted to an IBM 360/70 computer. These calcu­

lations were based on the following three methods of obtaining the elastic 

constants: 

1. Normal transformed cracked section concepts, 

2. Normal transformed uncracked section concepts, and 

3. Average cracked and uncracked concepts summed for several slab 

locations. 
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The transformed cracked and uncracked concepts were based on conven­

tional procedure as applied to reinforced concrete. The steel deck area 

was assumed to be concentrated at its c.g.s. for the moment of inertia of 

a cross-section perpendicular to the deck corrugations (for the y-direc-

tion). Since the deck itself has very little stiffness transverse to its 

corrugations, the steel deck area was neglected for the moment of inertia 

of a cross-section parallel to the deck corrugations (for the x-direction). 

The supplementary reinforcement contained in each slab (except Slab 3) 

was considered in computing the transformed section properties in both the 

X- and y-directions. Since there was no supplementary reinforcement in 

Slab 3, no cracked-section computations for the direction transverse to 

the corrugations were performed. 

A third type of orthotropic calculation was performed utilizing 

average cracked and uncracked concepts. This was done by an iterative 

process by having the computer perform a stress check at each selected 

slab location to ascertain if the section was cracked or uncracked. The 

criteria for cracking was approximated by assuming the maximum tensile 

stress equal to that obtained by the uniaxial modulus of rupture stress. 

This approximation neglects biaxial cracking criteria for the concrete, 

but nevertheless should give fairly good results. Once the computer pro­

gram determined whether a section was cracked or uncracked, the appli­

cable elastic constants were computed. The average of all the applicable 

constants for each direction at each location was then found and used to 

determinft HeflActimne anH force dî9trib«jtions throughout the sleb. 

In general the'orthotropic deflection calculations predicted the slab 

deflections quite adequately, depending on the particular slab stiffness and 
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selection of elastic constants. Comparisons between experimental and com­

puted deflection behavior is shown in Figures 73-77. These figures show 

the relationship between applied load and vertical deflection at the approx­

imate center of each slab. The offset curves in Figures 74-77, inclusive, 

are due to the permanent set caused by the cyclic loading of Slabs 2-5. 

The theoretical curves for the final cycle were drawn from a new zero point 

taking into account the permanent set for the final cycle of loading. 

As can be seen from Figures 73-77, the computations using the average 

slab properties give the best prediction of deflection for load ranges up 

to 50 % of ultimate. The next best prediction for deflection was obtained 

by the normal uncracked concepts. The cracked computations for deflection 

gave results only indicative of the slab deflection at the time when no­

ticeable cracking had occurred and overestimated considerably the deflection 

in the design range. 

The orthotropic plate theory for computing deflections worked very 

well up to about 50 % of ultimate load, with the average method of 

cracked and uncracked comcepts giving the best results. As expected, the 

orthotropic plate theory does not adequately predict deflections in the 

range near the ultimate load. For those slabs containing little or no 

transverse reinforcement (Slabs 1, 3, and 5), the approximate average 

method of orthotropic theory predicted the deflections reasonably well up 

to about 90% of the ultimate load. The uncracked orthotropic theory gave 

satisfactory deflection predictions for Slabs 1, 3, and 5 up to roughly 

tT̂ o-thirds of the load, but underestimates the deflections to a 

greater degree than does the average section approach. 
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Moment distributions 

Force distributions for the five two-way slabs were computed by the 

orthotropic plate theory as described in Chapter 2. As an example of how 

the forces varied throughout the slab, the most significant of these, My, 

was chosen to illustrate the distribution. M̂  is that moment in ft-kips/ft 

acting on a plane transverse to the deck corrugations and having a moment 

vector transverse to the corrugations. As described in the previous sec­

tion, three types of orthotropic theory calculations were performed. 

Only those Maldistributions using the average method of computing elastic 

properties are shown as examples. 

The theoretical M̂ -moment distributions were compared to experimental 

values which were computed from the measured concrete and steel strains. 

The experimental moments were determined from the uniaxial strains, 

neglecting the biaxial effects of strain on stress. This approximation 

was satisfactory for most load ranges since the measured strains trans­

verse to the deck corrugations were fairly small in comparison to the 

strains parallel to the deck corrugations. See Figures 48-52. 

The experimental moments, M̂ , were computed two ways. The first 

method for obtaining was based on the measured strain at the extreme 

fiber of the concrete. The second method was based on the measured strain 

on the steel dekcing. The two methods employed the general strain analysis 

technique as described previously in conjunction with the one-way slab 

elements utilizing Figure 67 and Equations (44), (45), and (46). The 

effccts cf shore rsEOval easting strains were not taken into account; 

consideration was given only to the applied loading conditions. 

The experimental moments based on the general strain analysis concepts 
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were obtained by a computer program written to iterate the strain distri­

bution across the depth until the resultant compressive force equaled the 

resultant tensile force (as divided into top, web, and bottom deck ele­

ments) at any given section. This procedure then utilizes one of the 

measured strains as the true strain and finds a compatible equilibrium 

force distribution to give Equating the resultant compressive and ten­

sile forces assumed that no membrane forces were present at the cross sec­

tion. This was considered valid since the slab was simply supported on 

casters or rollers with essentially little horizontal restraint. The two 

methods of computing the experimental gave two answers for which in 

most instances were fairly close indicating little or no membrane forces 

present. The experimental was taken as the average of the two results, 

except where one of the two values was obviously in error. In this case, 

only the more reasonable result was used. 

A more refined experimental moment, M̂ , could be obtained using the 

biaxial effects of the stress-strain relations for concrete such as those 

discussed previously in the principal strain section and given by Refer­

ence (20). Once the appropriate biaxial stress-strain relations have been 

established, then a more correct magnitude of the compressive resultant 

force and its appropriate location can be found. However, since the mag­

nitude of the concrete strain parallel to the corrugations was much larger 

than that transverse to the corrugations, the approximate experimental mo­

ments should be quite close to the two experimental moments. 

Sample results of the theoretical orthotropic and experimental moment. 

My, distributions are shown in Figures 78-82 for Slabs 1-5, respectively. 

These figures give the distribution of at the center section of the slab 
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in the y direction and at various x-distances across the slab to the cen-

terpoint. The M̂ -curves in these figures are plotted for several incre­

ments of applied loading. For Slabs 2-5, the lower increments of loading 

include the experimental moment determination after cycling as well as 

before. The moments after cycling were computed using the strain data 

commencing at the application of the applied loading and thus include the 

permanent deformations due to the cycling. 

As can be seen in Figure 78, for Slab 1, the M̂ -distribution obtained 

from the experimental strains is somewhat lower for the lower load stages 

such as at 5.4 kips per load point. This lower distribution is also true 

for the initial cycle of loading on the other slabs as well. The slightly 

lower moment for lower load increments is probably due to several factors 

influencing the computation of the experimental and theoretical moments. 

One important difference is due to the difference in depths. The experi­

mental moments were computed using the actual measured depth at each slab 

strain gage location, whereas the theoretical orthotropic moments assumed 

an average slab depth. Thus, the experimental moments should be more 

correct as far as the depth of slab variation is concerned. For the 

distributions shown, the corresponding locations generally had a greater 

depth, particularly in the central slab regions. Thus, the assumed depths 

for the orthotropic computations were less than the actual depths and re­

sulted in a higher moment to resist the same load. 

Other factors probably influenced the differences in moment distri­

butions. One of these is the assumption regarding biaxial effects as 

discussed previously. Still another factor concerns the assumptions used 

in computing the elastic constants, and the assumptions regarding the 
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stiffness of the deck in the transverse direction. These factors need 

further study. 

The general trend of agreement between the experimental and theoreti­

cal curves in Figures 78-82 shows the validity of using the equivalent 

orthotropic plate analysis of predicting the variation in bending moments. 

Of particular significance is that the theoretical and experimental curves 

showing the best agreement correspond to applied loading near 50 % 

of ultimate. See particularly 9.4 kips/L.P. for Slab 1 in Figure 78. 

Likewise, see 9.4 kips/L.P. for Slab 2, 6.4 kips/L.P. for Slab 3, and 

5.4 kips/L.P. for Slab 5 for the initial cycle in each instance in Figures 

79, 80, and 82, respectively. These loads might be considered approximately 

comparable to the design load for each slab. 

In Figure 79, the curves corresponding to 1.4, 5.4, and 9.4 kips/L.P. 

show an experimental moment distribution for the initial cycle and also 

for the final cycle of loading. Note that the theoretical curve for 1.4 

and 5.4 kips lies between the two experimental curves. The experimental 

curve for the final cycle of loading would be quite close to the theoreti­

cal curve if the permanent deformation moment at the beginning of the final 

cycle were subtracted from the total moments shown. 

Before-and-after cycling curves for Slabs 2-5 appear in each respec­

tive figure for those loads prior to the cycling load. Slab 3 in Figure 80 

has no 1.4 kips/L.P. level for the final cycle since no data readings were 

taken at this level. 

The advantage of the heavier supplemenatry reinforcement used in Slab 

2 is clearly indicated in Figure 79. The horizontal appearance of the ex­

perimental curve corresponding to an applied load of 15.4 kips shows that 
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there is a fairly uniform distribution of resisting moment across the sec­

tion. This is of importance since this indicates essentially the main 

load-carrying segments of the slabs for the major moments, for one­

way action. 

In comparing the common loading distributions from slab to slab in 

Figures 78-82, inclusive, the influence of the variations in stiffness can 

be seen. See, for example, the 5.4 kips/L.P. level for Slabs 1, 2, 4, and 

5, where the theoretical 5.4 kip-level moments for Slab 5 are higher for 

the same level due to the decrease in stiffness for Slab 5. Slab 5 had 

less depth of concrete over the deck corrugations than did the other slabs. 

A second set of M̂ -distributions is shown in Figures 83-87 for a 

section at a y distance of 45.5 inches from the edge of slab. These 

moments are shown as a function of the x-distance across each slab for 

various load increments. These section distributions are significant 

since they pass through the concentrated load point locations. 

Figures 83-87 reveal that the orthotropic and experimental moments 

give good correlation for all five slabs. The same factors previously 

discussed for the variation of bending moments at a section achieved by a 

y-distance of 69.5 in. also apply to bending moments at a y-distance of 

45.5 in. Again, the midrange values for the initial cycle of loading agree 

quite closely to the orthotropic plate method using the average elastic 

properties. See particularly the 9.4, 9.4, 6.4, 9.4, and 7.4 kips/L.P. 

levels for Slabs 1-5, respectively. 

Note the closeness of the theoretical and experimental curves for near 

ultimate for Slab 2 in Figure 84. This is probably due to the beneficial 

effect of the supplementary reinforcement. The large amount of supplementary 
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reinforcement in this slab helped to distribute the load quite uniformly 

across the width of the slab, and thus the average sectional properties 

used to obtain the theoretical moments provided good results. 

The method of treating the steel-deck reinforced slabs as equivalent 

orthotropic plates, using sectional constants based on average slab 

properties, proved valid. Factors such as depth variation, biaxial effects, 

and elastic constant computations need more refinement in the analysis. 

However, the analysis in its present form is a reliable means of pre­

dicting general trends and slab behavior. 

Curve fitting for deflected surfaces 

The deflected surfaces of the five full-scale slab tests were fitted 

to a sixth-order polynomial function. The deflected surface for this poly­

nomial is given in Chapter 2 as Equation (30). The results of the curve-

fitting procedure indicate that a close fit was obtained using Equation 

(30). An example of this fit is shown in Figure 88, where two cross sec­

tions of measured deflections are compared with the fitted curve for Slab 

5. In fitting the curves, symmetry of deflections was taken advantage of 

wherever possible. The two sample cross-sections are in two different 

directions. One section is for varying of distance along a constant x 

distance of 114 inches. The other section is for a varying x distance 

along a constant y distance of 93.5 inches. As can be seen in Figure 88, 

the deflections based on the polynomial curves show a close correspondence 

to the actual measured deflections. The applied load on Slab 5 at this 

stage was 5.4 kips per load point. 

A complete listing of the 28 coefficients, consisting of Cj^, C^, 
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Cg, and Cgg in Equation (30) is given in Table 32 for a load of 5.4 

kips/L.P. for each slab. These coefficients can be used in Equations 

(31-37) to obtain the force distributions throughout each of the slabs. 

The distribution of the moment and shear forces for all five slabs at 

various load increments was not completed due to lack of computer funding 

and time. 
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Table 32» Coefficients C,, C„, and C-g for Equation (30) for a polynomial deflection fit at a 
load of 5.4 kips/L.P. 

Slab No. 

Coefficient 

Data Set 1 Data Set 2 Data Set 3 Data Set 4 Data Set 5 

<=1 -0.2407566E-02 0.6423748E-01 0.1679031E 00 0.9269792E-01 0.1045502E 00 

0.3620794E-03 -0.4053306E-02 -0.4573554E-02 -0.2190814E-02 -0.1587792E-02 

s 0.6233496E-D3 0.1129949E-02 -0.2589967E-02 -0.3744976E-02 -0.5583525E-02 

-0.6546287E-05 0.1011273E-03 -0.6206808E-04 -0.4883741E-04 -0.1041977E-03 

S 
-0.3235288E-04 -0.1860890E-03 -0.8687492E-04 0.7090824E-04 0.8489547E-04 

«6 -0.1295329E-03 -0.3016298E-04 0.8148811E-04 0.8846050E-04 0.8245297E-04 

S -0.3061798E-07 -0.1325392E-05 0.3260871E-05 0.2060296E-05 0.3306831E-05 

<=8 0.7180377E-06 0.5043829E-05 0.2772055E-05 -0.1189229E-05 0.1916356E-06 

S 0.9713822E-06 -0.2506014E-05 -0.5737751E-05 -0.4055657E-05 -0.2765049E-05 

<=10 0.1319968E-05 0.1540232E-05 -0.2366903E-06 -0.2188807E-05 -0.3001828E-05 

=11 0.1157726E-08 0.9924065E-08 -0.4001938E-07 -0.244917lE-07 -0.3653056E-07 

1 
C
M
 

1 
r-

l 
O
 -0.8285156E-08 -0.6230345E-07 -0.3374775E-07 0.1481739E-07 -0.1674318E-07 

1̂3 -0.9093106E-08 0.1142908E-07 0.3841091E-07 0.3790825E-07 0.3356405E-07 

1̂4 
-0.2938444E-08 0.2855493E-07 0.5646826E-07 0.3864806E-07 0.2322895E-07 

1̂5 -0.5574108E-08 -0.2001003E-07 -0.2270143E-08 0.2138512E-07 0.3567548E-07 

1̂6 -0.6934067E-11 -0.4107283E-10 0.2015228E-09 0.1223475E-09 0.174995lE-09 

1̂7 0.4921921E-10 0.3798595E-09 0.2096565E-09 -0.9260018E-10 0.1494570E-09 

1̂8 0.7744957E-11 -0.7564495E-10 -0.1479819E-09 -0.1052393E-09 -0.3879481E-10 

1̂9 0.2144888E-10 -0.2121800E-09 -0.3994962E-09 -0.2802467E-09 -0.2171212E-09 
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Table 32. Continued 

Slab No, 

Coefficient 

'20 

'21 

'22 

'23 

'24 

'25 

'26 

'27 

'28 

Data Set I 

0.2992352E-10 

0.2007246E-10 

0.1241747E-13 

-0.3825817E-15 

-0.1068351E-12 

-0.7349809E-15 

-0.5726772E-13 

0.5263486E-15 

-0.1179864E-12 

Data Set 2 

0.1085421E-09 

0.7356370E-10 

0.7358149E-13 

0.3014207E-15 

-0.3976549E-12 

-0.3012725E-14 

0.5696336E-12 

•0.3524303E-14 

«0.9082026E-12 

Data Set 3 

0.1737573E-10 

-0.4877067E-11 

-0.3609861E-12 

0.4405677E-13 

-0.3335664E-13 

-0.6578844E-14 

0.1074937E-11 

-0.1410409E-13 

-0.5133453E-12 

Data Set 4 

-0.1167374E-09 

-0.7407908E-10 

-0.2I92374E-12 

0.1492600E-14 

0.4009045E-12 

0.4048513E-14 

0.7549288E-12 

0.3811428E-14 

0.2239613E-12 

Data Set 5 

-0.1436818E-09 

-0.1623035E-09 

-0.3048944E-12 

0.1937757E-12 

0.4741622E-12 

0.4416451E-13 

0.5592533E-12 

-0.8746915E-13 

-0.3998466E-12 
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CHAPTER 8. CONCLUSIONS 

Important conclusions regarding the analysis and behavioral results 

of the full-scale slab and slab element experimental tests are enumerated 

as follows: 

1. An ultimate strength procedure for two-way concrete slabs rein­

forced with cold-formed steel decking was formulated. The pro­

cedure was founded on the principles of yield-line theory and of 

shear-bond regression analysis. A collapse mechanism established 

by yield-line procedures was utilized to establish the effective 

load-carrying-segment width of the slabs. After the width of this 

segment was established, a shear-bond regression analysis was used 

to predict the total shear force distributed to the reactive 

edges perpendicular to the deck corrugations. The total shear 

existing along the sides of the effective load-carrying segment 

was subsequently added to the shear-bond components to give the 

predicted ultimate load for each slab. 

2. Theoretical deflections and moment distributions were computed by 

treating the corrugated steel-deck reinforced slabs as equivalent 

orthotroplc plates and applying conventional plate equations. An 

Iterative procedure was used to establish elastic plate constants. 

Good agreement between the computed and experimental moments and 

deflections was found. 

3. Ultimate failure of the test slabs was initiated by slippage be­

tween the steel deck and the concrete with the concrete moving 

outward parallel to the deck corrugations in the central regions 
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of the slabs. The observed slippage extended for a width approx­

imately equal to that of the main load-carrying element of the 

slab. Small amounts of slippage occurred prior to ultimate; 

however, the major portion of slip occurred at ultimate. 

Yielding of the steel did not appear to contribute to failure, 

however some local yielding in the vicinity of the load points 

was observed prior to ultimate. 

Welded wire fabric influenced the behavioral characteristics of 

the slabs. Slab 2, with the largest amount of supplementary 

steel, sustained the largest ultimate load and also sustained the 

largest ultimate deflection. Slab 3, without any supplementary 

reinforcing, could carry an ultimate load which was only 57 per­

cent that of Slab 2, Likewise, the ultimate deflection of Slab 3 

was much less than that of Slab 2, The addition of supplementary 

steel also had a beneficial effect on the lateral distribution of 

resisting moments. 

The use of corner tie-down reactions on Slab 1 resulted in this 

slab exhibiting stiffer behavioral characteristics than any of 

the other slabs. 

The measured edge reactions for the slab tests indicated that 

about 78 percent of the total load at the beginning of load appli­

cation was transmitted in the so-called "strong" direction to the 

east and west reactions. An exception was Slab 1, which had cor­

ner Lle-ùowu» , ôûd indicated about 72 parcest. All slabs, nczr 

ultimate, had a load distribution to the east and west edges of at 

least 97 percent of the total force, indicating the significance 
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of the one-way action of the main load-carrying element of the 

slabs. The lateral distribution of live load in the so-called 

weak direction varied over a considerable range. The maximum 

edge reactions in the weak direction usually occurred when the 

live load was about 50% of ultimate, or roughly equivalent to the 

design load. 

7. The one-way slab element tests revealed the following conclusions: 

a. Ultimate failure of the one-way slab element specimens with 

the deck corrugations parallel to the span length was ini­

tiated by a shear-bond failure consisting of a horizontal 

slippage of the concrete with respect to the steel deck. 

The shear-bond regression analysis approach gave very good 

linear predictions of the ultimate load for these one-way 

elements reinforced with three-inch-deep steel deck as well 

as 1%-inch deck. 

b. The addition of welded wire fabric appeared to increase the 

one-way shear-bond capacity for elements with the deck cor­

rugations parallel to the length by about 11 percent. 

c. A general strain analysis was used to predict the flexural 

capacity of the Blab elements with deck corrugations par­

allel to specimen length. This analysis was found particu­

larly useful for those specimens reinforced with steel deck 

having a yield stress of 101.6 ksi since this steel did not 

have sufficient ductility to assume yield across the entire 

deck cross section. The addition of the supplementary rein­

forcing and the effects of casting and shore removal were 
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also analyzed by the general strain analysis procedure, 

d. Ultimate failure of the one-way slab element specimens 

with the deck corrugations transverse to the specimen 

length was by a flexural failure of the concrete section 

above the deck corrugations. Those specimens without sup­

plementary steel transverse to the deck corrugations had 

an ultimate strength predicted by considering the flexural 

capacity using the gross concrete section above the corru­

gations based on the modulus of rupture strength. Those 

transverse specimens with the supplementary steel parallel 

to the specimen length had an ultimate strength predicted 

by flexural concepts by considering only the supplementary 

steel as taking the tensile force in a section above the 

corrugations. 
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